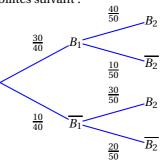


EXERCICE 1 4 points

1. Dans cette question, on prend n = 10.

a. On a l'arbre de probabilités suivant :



$$p(B_1 \cap B_2) = p(B_1) \times p_{B_1}(B_2) = \frac{30}{40} \times \frac{40}{50} = \frac{30}{50} \cdot \frac{3}{5} = 0,6.$$

On calcule de même $p(\overline{B_1} \cap B_2) = p(\overline{B_1}) \times p_{\overline{B_1}}(B_2) = \frac{30}{40} \times \frac{10}{40} = \frac{30}{50} \cdot \frac{3}{20} = 0.15.$

D'après la loi des probabilités totales $p(B_2) = p(B_1 \cap B_2) + p(\overline{B_1} \cap B_2) = \frac{3}{5} + \frac{3}{20} = \frac{12+3}{20} \cdot \frac{15}{20} = \frac{3}{4} = 0,75.$

b. On a
$$p_{B_2}(B_1) = \frac{p(B_1 \cap B_2)}{p(B_2)} = \frac{\frac{3}{5}}{\frac{3}{4}} = \frac{3}{5} \times \frac{4}{3} = \frac{4}{5} = 0, 8.$$

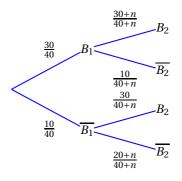
c. On a
$$p(A) = p\left(B_1 \cap \overline{B_2}\right) + p\left(\overline{B_1} \cap B_2\right) = \frac{3}{4} \times \frac{1}{20} + \frac{3}{20} = \frac{3}{20} + \frac{3}{20} = \frac{6}{20} = \frac{3}{10} = \frac{3}{10}$$

2. a. On a une épreuve de Bernoulli avec n = 8 et $p = p(A) = \frac{3}{10}$ La probabilité d'avoir 3 fois l'évènement A est :

$$\binom{8}{3} \left(\frac{3}{10}\right)^3 \left(1 - \frac{3}{10}\right)^{8-3} = \frac{8 \times 7 \times 6}{3 \times 2} \left(\frac{3}{10}\right)^3 \left(\frac{7}{10}\right)^5 \approx 0,254 \approx 0,25.$$

b. On a E =
$$n \times p = 8 \times \frac{3}{10} = \frac{12}{5} = 2, 4$$
.

3. On reprend l'arbre précédent, mais en ajoutant n boules :



Baccalauréat S A. P. M. E. P.

Ici
$$p(A) = \frac{30}{40} \times \frac{10}{40 + n} + \frac{10}{40} \times \frac{30}{40 + n} = \frac{15}{40 + n}.$$

D'où $p(A) = \frac{1}{4} \iff \frac{15}{40 + n} = \frac{1}{4} \iff 60 = 40 + n \iff n = 20.$

EXERCICE 2 5 points

1. On a EJ = $\frac{2}{3}$, donc FJ² = $1^2 + \left(\frac{2}{3}\right)^2 = \frac{13}{9}$. De même BI² = $\frac{2}{3}$, donc FI² = $1^2 + \left(\frac{2}{3}\right)^2 = \frac{13}{9}$.

 $FJ^2 = BI^2 \Rightarrow FJ = BI$, donc le triangle FIJ est isocèle en F. K étant le milieu de [IJ], la droite (FK) médiane du triangle isocèle est aussi hauteur, donc perpendiculaire à (IJ).

On admet que les droites (GK) et (IJ) sont orthogonales.

- **2.** La droite (IJ) est orthogonale à deux droites (FK) et (GK) sécantes du plan (FGK) : elle est donc orthogonale à ce plan.
- **3.** P est le projeté orthogonal de G sur le plan (FIJ), donc la droite (PG) est orthogonale à ce plan et en particulier à toute droite de ce plan : donc (PG) est orthogonale à (IJ).

De même (IJ) est orthogonale au plan (FGK), donc en particulier (IJ) est orthogonale à (FG).

Les points F, G, P non alignés définissent un plan (FGP). La droite (IJ) orthogonale à deux droites séc antes de ce plan est orthogonale à ce plan (FGP).

- **a.** On vient de émontrer que les deux plans (FGK) et (FGP) sont orthogonaux à la droite (IJ). Mais ces deux plans contiennent le point E Il n'existe qu'un plan contenant un point (F) et orthogonal à une droite (IJ) donnée, donc F, G, K et P sont complanaires.
 - **b.** On sait que (IJ) est orthogonale à (FP); (IJ) est orthognale à (FK) et comme les points F, P et K sont coplanaires la droite (FP) est la droite (FK), autrement dit les points F, P et K sont alignés.

Partie B

1. On a
$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AE}$$
; donc F(1; 0; 1)
 $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$; donc G(1; 1; 1)
 $\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$; donc I(1; $\frac{2}{3}$; 0)
 $\overrightarrow{AJ} = \overrightarrow{AE} + \overrightarrow{EJ} = \overrightarrow{AE} + \frac{2}{3}\overrightarrow{AD}$; donc J(0; $\frac{2}{3}$; 1)

2. a. G a pour projeté orthogonal sur le plan (FIJ) le point P, donc (GP) est orthogonale à (FIJ).

N appartient à la droite (GP), donc (GN) est orthogonale à (FIJ) donc à toute droite de ce plan : conclusion : (GN) est orthogonale à (FI) et à (FJ).

b. On a
$$\overrightarrow{GN}$$
 $\begin{pmatrix} x-1 \\ y-1 \\ -1 \end{pmatrix}$ et \overrightarrow{FI} $\begin{pmatrix} 0 \\ \frac{2}{3} \\ -1 \end{pmatrix}$.

$$\overrightarrow{GN} \cdot \overrightarrow{FI} = \frac{2}{3}(y-1) + 1 = \frac{2}{3}y + \frac{1}{3}.$$

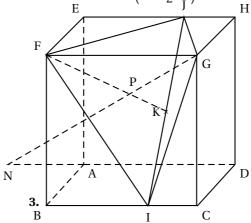
$$\overrightarrow{FJ}$$
 $\begin{pmatrix} -1 \\ \frac{2}{3} \\ 0 \end{pmatrix}$. Donc $\overrightarrow{GN} \cdot \overrightarrow{FJ} = (x-1) \times (-1) + \frac{2}{3}(y-1) = -x + \frac{2}{3}y + \frac{1}{3}.$

Baccalauréat S A. P. M. E. P.

c. D'après 2. a. les deux produits scalaires ci-dessus sont nuls, donc

$$\frac{2}{3}y + \frac{1}{3} = 0 \Rightarrow y = -\frac{1}{2} \text{ et } -x + \frac{2}{3}y + \frac{1}{3} = 0 \Rightarrow x = -\frac{1}{3} + \frac{1}{3} = 0.$$

Les cordonnées de N sont donc $\left(0; -\frac{1}{2}; 0\right)$.



EXERCICE 3 5 points

Partie A

1. (t_n) appartient à l'ensemble (E) si et seulement si, pour tout entier naturel n non nul, $t_{n+1}-t_n=0.24t_{n-1}\iff \lambda^{n+1}-\lambda^n=0.24\lambda^{n-1}\iff \lambda^2-\lambda=0.24$ On a $\lambda^2-\lambda=0.24\iff (\lambda-0.5)^2-0.25-24=0\iff (\lambda-0.5)^2=0.72\iff \lambda-0.5=0.7$ ou $\lambda-0.5=-0.7\iff \lambda=1.2$ ou $\lambda=-0.2$.

Les suites (t_n) appartenant à (E) sont les suites $t_n = 0, 2^n$ et $t_n = (-0, 2)^n$.

2. u_n doit vérifier $\begin{cases} \alpha(1,2)^0 + \beta(-0,2)^0 &= 6 \\ \alpha(1,2)^1 + \beta(-0,2)^1 &= 6,6 \end{cases} \iff \begin{cases} \alpha+\beta &= 6 \\ 1,2\alpha-0,2\beta &= 6,6 \end{cases} \Rightarrow 1,2\alpha-0,2(6-\alpha) = 6,6 \iff 1,4\alpha = 7,8 \iff \alpha = \frac{39}{7}.$

On en déduit que $\beta = 6 - \alpha = 6 - \frac{39}{7} = \frac{3}{7}$. La suite s'écrit donc : quel que soit $n \in \mathbb{N}$, $u_n = \frac{39}{7}(1,2)^n + \frac{3}{7}(-0,2)^n$.

3. Comme -1 < -0.2 < 1, $\lim_{n \to +\infty} (-0.2)^n = 0$; d'autre part $\lim_{n \to +\infty} (1.2)^n = +\infty$ et $\lim_{n \to +\infty} u_n = +\infty$

Partie B

1. **a.** $f(x) = 1,4x - 0,05x^2 = x(1,4-0,05x) = f(x) = -0,05(x^2 - 28x) = -0,05[(x-14)^2 - 196].$

La fonction trinôme f a donc un extremum pour x = 14, f(14) = 9.8 et cet extremum est un maximum car -0.05 < 0.

La fonction est donc croissante sur $]-\infty$: 14] et décroissante sur [14: $+\infty$].

b. Initialisation: $v_0 = 6$, $v_1 = 1,4v_0 - 0,005v_0^2 = 1,4 \times 6 - 0,05 \times 6^2 = 8,4 - 1,8 = 6.6$

On a bien $0 \le v_0 \le v_1 \le 8$.

Hérédité : supposons qu'il existe $p \in \mathbb{N}$ tel que $0 \le v_p < v_{p+1} \le 8$. On a $v_{p+2} = f(v_{p+1})$. D'après la question précédente la fonction

On a $v_{p+2}=f\left(v_{p+1}\right)$. D'après la question précédente la fonction f est croissante sur $]-\infty$; 14]; donc $0\leqslant v_p\leqslant v_{p+1}\leqslant 8\Rightarrow 0\leqslant f\left(v_p\right)\leqslant f\left(v_{p+1}\right)\leqslant f(8)\iff 0\leqslant v_{p+1}\leqslant v_{p+2}\leqslant f(8)$. Or f(8)=8. L'hérédité est donc démontrée

On a donc démontré par récurrence que pour tout entier naturel n, $0 \le v_n < v_{n+1} \le 8$.

Baccalauréat S A. P. M. E. P.

- 2. La question précédente montre que :
 - la suite est croissante;
 - la suite est majorée par 8

Conclusion : la suite (v_n) converge vers une limite ℓ inférieure ou égale à 8. La relation $v_{n+1}=1,4v_n-0,05v_n^2$ entraı̂ne par limite à l'infini (toutes les fonctions étant continues) :

 $\ell=1, 4\ell-0, 05\ell^2 \iff 0, 4\ell=0, 05\ell^2 \iff \ell=0 \quad \text{(impossible car la suite est croissante à partir de 6) ou} \quad \ell=8$

La suite (v_n) converge vers 8.

EXERCICE 4 6 points

Partie A - Étude de fonction f.

- 1. On a $f(x) = \ln \left[e^x \left(1 + 2e^{-2x} \right) \right] = \ln \left(e^x \right) + \ln \left(1 + 2e^{-2x} \right) = x + \ln \left(1 + 2e^{-2x} \right)$. On admet que, pour tout réel x, $f(x) = -x + \ln \left(2 + e^{2x} \right)$.
- **2.** Comme $f(x) x = \ln(1 + 2e^{-2x})$ et que $\lim_{x \to +\infty} \ln(1 + 2e^{-2x}) = 0$, on en déduit que $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$ et que la droite (d) dont une dés équations est y = x est asymptote à (\mathscr{C}) au voisinage de plus l'infini.

Comme $2e^{-2x} > 0$, $\lim_{x \to +\infty} \ln(1 + 2e^{-2x}) > 0$.

Conclusion : au voisinage de plus l'infini (\mathscr{C}) est au dessus de (d)

3. En utilisant l'écriture de f(x) admise ci-dessus, on obtient de même $\lim_{x \to -\infty} \ln(2 + e^{2x}) = \ln 2$, que $\lim_{x \to -\infty} f(x) - (-x) = \ln 2$, c'est-à-dire $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x = +\infty$.

Conclusion La droite (d') d'équation $y = -x + \ln 2$ est asymptote à (\mathscr{C}) au voisinage de moins l'infini.

4. La fonction f composée de fonctions dérivables est dérivable sur \mathbb{R} et $f'(x) = \frac{e^x - 2e^{-x}}{e^x + 2e^{-x}}$ qui est du signe de $e^x - 2e^{-x}$ car le dénominateur est positif comme somme de termes positifs.

Posons $X = e^x$ qui est donc positif; le signe de f'(x) est celui de $X - \frac{2}{X} = \frac{X^2 - 2}{X}$ qui est positif pour $X > \sqrt{2} \iff e^x > \sqrt{2} \iff x > \ln(\sqrt{2}) \iff x > \frac{1}{2}\ln 2$ et négatif autrement. La fonction est donc décroissante sur $]-\infty$; $\frac{1}{2}\ln 2$] et croissante sur $[\frac{1}{2}\ln 2; +\infty[$

Le minimum de la fonction est donc $f\left(\frac{1}{2}\ln 2\right) = -\frac{1}{2}\ln 2 + \ln\left(2 + e^{\ln 2}\right)$ (en utilisant l'écriture admise) $= -\frac{1}{2}\ln 2 + \ln 4 = -\frac{1}{2}\ln 2 + 2\ln 2 = \frac{3}{2}\ln 2$.

5.

Partie B - Encadrement d'une intégrale.

On pose $I = \int_{2}^{3} [f(x) - x] dx$.

1. Sur l'intervalle [2; 3], $2e^{-2x} > 0 \Rightarrow 1 + 2e^{-2x} > 1 \Rightarrow \ln(1 + 2e^{-2x}) > \ln 1$, donc f(x) > x.

La fonction f(x) - x étant positive sur [2; 3] l'intégrale est égale à l'aire (en unités d'aire) de la surface limitée par la droite (d), la courbe $\mathscr C$ et les verticales d'équations x = 2 et x = 3.

Baccalauréat S A. P. M. E. P.

- **2.** Soit g définie sur $[0; +\infty[$ par $g(x) = \ln(1+X) X.$ La fonction g est dérivable et $g'(x) = \frac{1}{1+X} - 1 = \frac{-X}{1+X}$ qui est du signe de -X donc négative; la fonction est décroissante et comme g(0) = 0, on en conclut que $g(X) \le 0 \iff \ln(1+X) - X \le 0 \iff \ln(1+X) \le X$.
- 3. En utilisant le résultat précédent, on obtient $\ln (1 + 2e^{-2x}) \le 2e^{-2x} \iff$ $f(x) - x \leqslant 2e^{-2x}.$

Donc l'intégrale étant une aire,
$$0 \le I \le \int_2^3 2e^{-2x} dx$$

On calcule $\int_2^3 2e^{-2x} dx = \left[-e^{-2x} \right]_2^3 = -e^{-2 \times 3} + e^{-2 \times 2} = e^{-4} - e^{-6} \approx 0,0158$.
Conclusion $0 < I < 0,02$.

Annexe

Cette page sera complétée et remise avec la copie à la fin de l'épreuve.

EXERCICE 4

