EXERCICE 1 5 points

Le plan complexe est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On considère les points A et B d'affixes respectives : a = i et b = 1 + i.

On note : r_A la rotation de centre A, d'angle $\frac{\pi}{2}$, r_B la rotation de centre B, d'angle $\frac{\pi}{2}$ et r_O la rotation de centre O, d'angle $-\frac{\pi}{2}$.

Partie A

On considère le point C d'affixe c=3i. On appelle D l'image de C par r_A , G l'image de D par r_B et H l'image de C par r_O .

On note d, g et h les affixes respectives des points D, G et H.

- 1. Démontrer que d = -2 + i.
- **2.** Déterminer g et h.
- 3. Démontrer que le quadrilatère CDGH est un rectangle.

Partie B

On considère un point M, distinct de O et de A, d'affixe m. On appelle N l'image de M par r_A , P l'image de N par r_B et Q l'image de M par r_O . On note n, p et q les affixes respectives des points N, P et Q.

- **1.** Montrer que n = im + 1 + i. On admettra que p = -m + 1 + i et q = -im.
- 2. Montrer que le quadrilatère MNPQ est un parallélogramme.
- 3. **a.** Montrer l'égalité : $\frac{m-n}{p-n} = i + \frac{1}{m}$.
 - **b.** Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation

Déterminer l'ensemble (Γ) des points M tels que le quadrilatère MNPQ soit un rectangle.

EXERCICE 2 4 points

Les parties A et B sont indépendantes

Partie A

Une salle informatique d'un établissement scolaire est équipée de 25 ordinateurs dont 3 sont défectueux. Tous les ordinateurs ont la même probabilité d'être choisis.

On choisit au hasard deux ordinateurs de cette salle.

Quelle est la probabilité que ces deux ordinateurs soient défectueux?

Partie B

La durée de vie d'un ordinateur (c'est-à-dire la durée de fonctionnement avant la première panne), est une variable aléatoire X qui suit une loi exponentielle de paramètre λ avec $\lambda>0$.

Ainsi, pour tout réel t positif, la probabilité qu'un ordinateur ait une durée de vie inférieure à t années, notée $p(X \le t)$, est donnée par : $p(X \le t) = \int_0^t \lambda e^{-\lambda x} dx$.

- **1.** Déterminer λ sachant que p(X > 5) = 0, 4.
- 2. Dans cette question, on prendra $\lambda = 0, 18$. Sachant qu'un ordinateur n'a pas eu de panne au cours des 3 premières années, quelle est, à 10^{-3} près, la probabilité qu'il ait une durée de vie supérieure à 5 ans?
- **3.** Dans cette question, on admet que la durée de vie d'un ordinateur est indépendante de celle des autres et que p(X > 5) = 0,4.
 - a. On considère un lot de 10 ordinateurs. Quelle est la probabilité que, dans ce lot, l'un au moins des ordinateurs ait une durée de vie supérieure à 5 ans? On donnera une valeur arrondie au millième de cette probabilité.
 - **b.** Quel nombre minimal d'ordinateurs doit-on choisir pour que la probabilité de l'évènement « l'un au moins d'entre eux a une durée de vie supérieure à 5 ans » soit supérieure à 0,999?

EXERCICE 3 5 points

Partie A: Restitution organisée de connaissances

On considère trois points A, B et C de l'espace et trois réels a,b et c de somme non nulle.

Démontrer que, pour tout réel k strictement positif, l'ensemble des points M de l'espace tels que $\|a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC}\| = k$ est une sphère dont le centre est le barycentre des points A, B et C affectés des coefficients respectifs a,b et c.

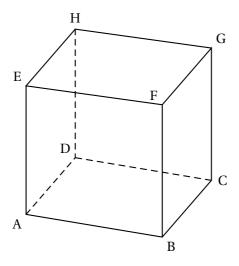
Partie B

On considère le cube ABCDEFGH d'arête de longueur 1 représenté ci-dessous. Il n'est pas demandé de rendre le graphique avec la copie. L'espace est rapporté au repère orthonormal (A; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}).

- 1. Démontrer que le vecteur \overrightarrow{n} de coordonnées (1 ; 0 ; 1) est un vecteur normal au plan (BCE).
- 2. Déterminer une équation du plan (BCE).
- 3. On note (Δ) la droite perpendiculaire en E au plan (BCE). Déterminer une représentation paramétrique de la droite (Δ) .
- **4.** Démontrer que la droite (Δ) est sécante au plan (ABC) en un point R, symétrique de B par rapport à A.
- **5. a.** Démontrer que le point D est le barycentre des points R, B et C affectés des coefficients respectifs 1, −1 et 2.

b. Déterminer la nature et les éléments caractéristiques de l'ensemble (S) des points M de l'espace tels que $\|\overrightarrow{MR} - \overrightarrow{MB} + 2\overrightarrow{MC}\| = 2\sqrt{2}$.

- **c.** Démontrer que les points B, E et G appartiennent à l'ensemble (S).
- **d.** Démontrer que l'intersection du plan (BCE) et de l'ensemble (*S*) est un cercle dont on précisera le rayon.



EXERCICE 3 5 points Enseignement de spécialité

Partie A : Restitution organisée de connaissances

Démontrer le théorème de Gauss en utilisant le théorème de Bézout.

Partie B

On rappelle la propriété connue sous le nom de petit théorème de Fermat : « Si p est un nombre premier et q un entier naturel premier avec p, alors $q^{p-1} \equiv 1 \pmod{p}$ ».

On considère la suite (u_n) définie pour tout entier naturel n non nul par :

$$u_n = 2^n + 3^n + 6^n - 1.$$

- 1. Calculer les six premiers termes de la suite.
- **2.** Montrer que, pour tout entier naturel n non nul, u_n est pair.
- **3.** Montrer que, pour tout entier naturel n pair non nul, u_n est divisible par 4. On note (E) l'ensemble des nombres premiers qui divisent au moins un terme de la suite (u_n) .
- **4.** Les entiers 2, 3, 5 et 7 appartiennent-ils à l'ensemble (E) ?
- **5.** Soit *p* un nombre premier strictement supérieur à 3.
 - **a.** Montrer que : $6 \times 2^{p-2} \equiv 3 \pmod{p}$ et $6 \times 3^{p-2} \equiv 2 \pmod{p}$.
 - **b.** En déduire que $6u_{p-2} \equiv 0 \pmod{p}$.
 - **c.** Le nombre *p* appartient-il à l'ensemble (E)?

EXERCICE 4 6 points

Partie A

On considère la fonction g définie sur $[0; +\infty[$ par

$$g(x) = e^x - x - 1.$$

- 1. Étudier les variations de la fonction *g*.
- **2.** Déterminer le signe de g(x) suivant les valeurs de x.
- **3.** En déduire que pour tout x de $[0; +\infty[, e^x x > 0]$.

Partie B

On considère la fonction f définie sur [0; 1] par

$$f(x) = \frac{e^x - 1}{e^x - x}.$$

La courbe (\mathscr{C}) représentative de la fonction f dans le plan muni d'un repère orthonormal est donnée en annexe.

Cette annexe sera complétée et remise avec la copie à la fin de l'épreuve.

On admet que f est strictement croissante sur [0; 1].

- **1.** Montrer que pour tout x de [0; 1], $f(x) \in [0; 1]$.
- **2.** Soit (D) la droite d'équation y = x.
 - **a.** Montrer que pour tout *x* de [0; 1], $f(x) x = \frac{(1-x)g(x)}{e^x x}$.
 - **b.** Étudier la position relative de la droite (D) et de la courbe (\mathscr{C}) sur [0; 1].
- **3. a.** Déterminer une primitive de f sur [0; 1].
 - **b.** Calculer l'aire, en unités d'aire, du domaine du plan délimité par la courbe (\mathscr{C}), la droite (CD) et les droites d'équations x = 0 et x = 1.

Partie C

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 &= \frac{1}{2} \\ u_{n+1} &= f(u_n), \text{ pour tout entier naturel } n. \end{cases}$$

- **1.** Construire sur l'axe des abscisses les quatre premiers termes de la suite en laissant apparents les traits de construction.
- **2.** Montrer que pour tout entier naturel $n, \frac{1}{2} \leqslant u_n \leqslant u_{n+1} \leqslant 1$.
- **3.** En déduire que la suite (u_n) est convergente et déterminer sa limite.

ANNEXE

Cette page sera complétée et remise avec la copie à la fin de l'épreuve

EXERCICE 4

