Correction contrôle de mathématiques Du jeudi 06 février 2020

Exercice 1

Nombre dérivé (3 points)

1) On obtient: $\begin{vmatrix} x & -3 & -1 & 3 & 8 \\ f(x) & 1 & 2 & -2 & 1 \\ f'(x) & 2 & 0 & -1 & 4 \\ \end{vmatrix}$

2) On utilise l'approximation affine : $f(a+h) \approx f(a) + hf'(a)$ avec $f(x) = x^7$, $f'(x) = 7x^6$ a = 1 et h = 0,02. $(1,02)^7 \approx 1^7 + 0,02 \times 7(1)^6 \approx 1,14$

Exercice 2

Calcul de dérivées (8 points)

Pour les fonctions suivantes :

1)
$$f(x) = 2x^3 - 7x^2 + 3x - \sqrt{3}$$
, f dérivable sur \mathbb{R} , $f'(x) = 6x^2 - 14x + 3$

2)
$$f(x) = 2x + 3 - \frac{1}{x^4}$$
, f dérivable sur \mathbb{R}^* , $f'(x) = 2 + \frac{4}{x^5} = \frac{2(x^5 + 2)}{x^5}$

3)
$$f(x) = \sqrt{2-x}$$
, f dérivable sur $]-\infty, 2[$, $f'(x) = \frac{-1}{2\sqrt{2-x}}$

4)
$$f(x) = \frac{5}{x^2 - 1}$$
, f dérivable sur $\mathbb{R} - \{-1, 1\}$, $f'(x) = \frac{-5(2x)}{(x^2 - 1)^2} = \frac{-10x}{(x^2 - 1)^2}$

5)
$$f(x) = \frac{2x}{x^2 + 4}$$
, f dérivable sur \mathbb{R} , $f'(x) = \frac{2(x^2 + 4) - (2x)(2x)}{(x^2 + 4)^2} = \frac{8 - 2x^2}{(x^2 + 4)^2}$
$$f'(x) = \frac{2(2 - x)(2 + x)}{(x^2 + 4)^2}$$

6)
$$f(x) = (x+1)\sqrt{2x-5}$$
, f dérivable sur $\left| \frac{5}{2}; +\infty \right|$,
 $f'(x) = 1 \times \sqrt{2x-5} + (x+1) \times \frac{2}{2\sqrt{2x-5}} = \frac{3x-4}{\sqrt{2x-5}}$

7)
$$f(x) = (3-2x)^3$$
, f dérivable sur \mathbb{R} , $f'(x) = 3 \times (-2)(3-2x)^2 = -6(3-2x)^2$

Exercice 3

Étude d'une fonction

(5 points)

1)
$$f'(x) = \frac{(2x-4)(x-1)-1(x^2-4x+7)}{(x-1)^2} = \frac{2x^2-2x-4x+4-x^2+4x-7}{(x-1)^2} = \frac{x^2-2x-3}{(x-1)^2}$$

2) f'(x) = 0, $x_1 = -1$ racine évidente, P = -3 donc $x_2 = 3$. Signe $f'(x) = \text{signe } (x^2 - 2x - 3)$ car $\forall x \in \mathbb{R} - \{1\}$, $(x - 1)^2 > 0$

х	$-\infty$		-1		1		3		+∞
f'(x)		+	0	_		_	0	+	
f(x)	-∞		-6	-∞		+∞	2	<i></i>	+∞

$$f(-1) = \frac{1+4+7}{-2} = -6$$
$$f(3) = \frac{9-12+7}{2} = 2$$

3) (T):
$$y = f'(2)(x-2) + f(2)$$
 avec $f'(2) = -3$ et $f(2) = 3$
(T): $y = -3(x-2) + 3 \Leftrightarrow y = -3x + 9$

4)
$$f'(x) = \frac{1}{2} \Leftrightarrow \frac{x^2 - 2x - 3}{(x - 1)^2} = \frac{1}{2} \Leftrightarrow 2x^2 - 4x - 6 = x^2 - 2x + 1 \Leftrightarrow x^2 - 2x - 7 = 0$$

 $\Delta = 4 + 28 = 32 = (4\sqrt{2})^2 \text{ d'où } x_1 = \frac{2 + 4\sqrt{2}}{2} = 1 + 2\sqrt{2} \text{ ou } x_2 = 1 - 2\sqrt{2}.$

Il existe 2 tangentes à la courbe \mathscr{C}_f parallèles à la droite d'équation $y = \frac{1}{2}x - 5$ en $x = 1 + 2\sqrt{2}$ et $x = 1 - 2\sqrt{2}$.

5)
$$f'(x) = 2 \Leftrightarrow \frac{x^2 - 2x - 3}{(x - 1)^2} = 2 \Leftrightarrow x^2 - 2x - 3 = 2x^2 - 4x + 2 \Leftrightarrow x^2 - 2x + 5$$

 $\Delta = 4 - 20 = -16 < 0$, pas de solution.

Il n'existe pas de tangente à la courbe \mathcal{C}_f parallèles à la droite d'équation y = 2x + 1

Exercice 4

Équation du troisième degré

(4 points)

- 1) $f'(x) = 3x^2 6x = 3x(x 2)$.
 - $f'(x) = 0 \Leftrightarrow x = 0 \text{ ou } x = 2.$
 - Signe f'(x) = signe du trinôme.

X	-2		0		2		3
f'(x)		+	0	_	0	+	
f(x)	-17		3		-1		3

- 2) D'après le tableau de variation, f(x) change trois fois de signe entre -2 et 0, entre 0 et 2 et entre 2 et 3. L'équation f(x) = 0 a donc trois solutions.
- 3) On obtient sur la calculatrice (voir page suivante) :
 - a) À l'aide de l'instruction "racine" de la calculatrice, on trouve les trois solutions suivantes : $x_1 \approx -0.879$, $x_2 \approx 1.347$, $x_3 \approx 2.532$
 - b) On trace sur la calculatrice la droite y = x + 2 puis on cherche les abscisses des points de \mathcal{C}_f qui sont sur ou au dessus de la droite d'équation y = x + 2.

En utilisant l'instruction "intersection" de la calculatrice, on trouve :

$$S = [-0,675; 0,461]$$

