Correction contrôle de mathématiques Du lundi 16 mars 2020

Exercice 1

Propriétés algébriques

(5 points)

1) a)
$$A = e^{-4}$$

b)
$$B = e^{-1}$$

c)
$$C = e^{4+4x}$$

2) a)
$$(e^x + 1)^2 + (e^x - 1)^2 = (e^x)^2 + 2e^x + 1 + (e^x)^2 - 2e^x + 1 = 2e^{2x} + 2 = 2(e^{2x} + 1)$$

b)
$$\frac{e^{3x} - e^{2x}}{e^{3x} + e^{2x}} = \frac{e^{2x}(e^x - 1)}{e^{2x}(e^x + 1)} = \frac{(e^x - 1)(e^x + 1)}{(e^x + 1)^2} = \frac{(e^x)^2 - 1}{(e^x + 1)^2} = \frac{e^{2x} - 1}{(e^x + 1)^2}$$

EXERCICE 2

Résolution équation et inéquation

(4 points)

1) On utilise la propriété de la monotonie de la fonction exponentielle :

a)
$$e^{-2x+1} - e^4 = 0 \Leftrightarrow e^{-2x+1} = e^4 \Leftrightarrow -2x+1 = 4 \Leftrightarrow x = -\frac{3}{2}$$

$$S = \left\{-\frac{3}{2}\right\}$$

b)
$$e^{x^2+x+4} = e^2 e^{4x} \Leftrightarrow e^{x^2+x+4} = e^{4x+2} \stackrel{\text{exp monotone}}{\Leftrightarrow} x^2+x+4 = 4x+2 \Leftrightarrow x^2-3x+2 = 0$$

 $x_1 = 1$ racine évidente, $P = 2$ donc $x_2 = 2$ d'où $S = \{1; 2\}$

2) On utilise la propriété de la croissance de la fonction exponentielle :

a)
$$e^{-x+2} - 1 \ge 0 \iff e^{-x+2} \ge e^0 \iff -x+2 \ge 0 \iff x \le 2$$
. d'où $S =]-\infty$; 2].

b)
$$(e^x - 1)(2e^x + 1) \le 0$$
 $\stackrel{\forall x \in \mathbb{R}, \ 2e^x + 1 > 0}{\Leftrightarrow} e^x - 1 \le 0 \Leftrightarrow e^x \le e^0 \stackrel{\exp \nearrow}{\Leftrightarrow} x \le 0$
 $S =]-\infty$; 0]

Exercice 3

Étude des fonctions

(5 points)

1) a)
$$f'(x) = -e^x + (4-x)e^x = e^x(-1+4-x) = (3-x)e^x$$
.

b)
$$f'(x) = 0 \Leftrightarrow 3 - x = 0 \Leftrightarrow x = 3 \text{ car } \forall x \in \mathbb{R}, e^x > 0.$$

Signe de
$$f'(x)$$
 = signe de $(3 - x)$.

x	-∞		3		+∞
f'(x)		+	•	_	
f(x)	0		e^3	<u></u>	-∞

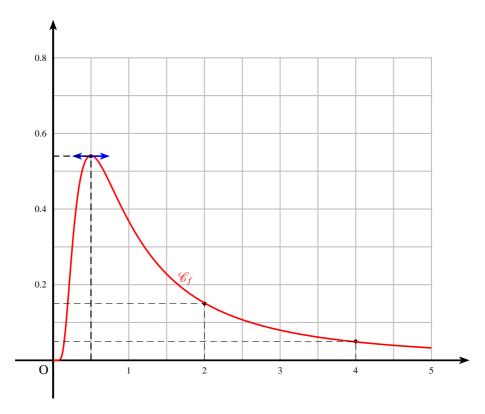
2) a)
$$f'(x) = -\frac{2}{x^3}e^{-\frac{1}{x}} + \frac{1}{x^2}\left(-\frac{-1}{x}\right)e^{-\frac{1}{x}} = e^{-\frac{1}{x}}\left(-\frac{1}{x^3} + \frac{1}{x^4}\right) = \left(\frac{-2x+1}{x^4}\right)e^{-\frac{1}{x}}.$$

b)
$$f'(x) = 0 \iff -2x + 1 = 0 \iff x = \frac{1}{2} \text{ car } \forall x > 0, \ \frac{e^{-\frac{1}{x}}}{x^4} > 0.$$

Signe de f'(x) = signe de (-2x + 1).

х	0	$\frac{1}{2}$	+∞
f'(x)		+ 0	_
f(x)		0 $4e^{-}$	0

c) $f(0,5) \approx 0,54$, $f(2) \approx 0,15$ et $f(4) \approx 0,05$.



Exercice 4

Couples de lapins

(3 points)

Un couple de lapins est introduit dans une île qui ne contient pas de prédateurs. L'accroissement de la population de lapin d'une année à l'autre est alors proportionnel à l'effectif de cette population. Pour tout $n \in \mathbb{N}$, on appelle p_n la population de lapins à l'année n.

On peut alors établir que : $p_n = 2e^{\frac{3}{2}n}$

1)
$$p_{n+1} = 2e^{\frac{3}{2}(n+1)} = 2e^{\frac{3}{2}n} \times e^{\frac{3}{2}} = p_n \times e^{\frac{3}{2}}$$
.

 $\forall n \in \mathbb{N}, \ \frac{p_{n+1}}{p_n} = e^{\frac{3}{2}}, \text{ donc la suite } (p_n) \text{ est géométrique de raison } q = e^{\frac{3}{2}} \approx 4,48 \text{ et de premier terme } p_0 = 2.$

- 2) $p_2 = 2e^3 \approx 40$. La population de lapins au bout de 2 ans est de 40.
- 3) On trouve : $p_4 \approx 806 < 2000$ et $p_5 \approx 3616 > 2000$. La population de lapin a été multiplié par 1000 au bout de 5 ans. Remarque : pour une variation continue entre 4 et 5 ans : $n \approx 4$, 6 soit 4 ans et 7 mois.
- 4) $p_{10} \approx 6\,538\,034$ soit une population de 6,5 millions au bout de 10 ans! Ce n'est pas réaliste car la nourriture n'est pas infinie, même en l'absence de prédateurs.

Exercice 5

Algorithme (3 points)

- 1) $f'(x) = e^x 1$. $\forall x \ge 0$, $e^x \ge e^0 = 1 \implies f'(x) \ge 0$. La fonction f est croissante sur \mathbb{R}_+ .
- 2) f(0) = -3 $f(3) \approx 14$. La fonction f étant croissante sur \mathbb{R}_+ , elle ne peut s'annuler qu'une seule fois sur \mathbb{R}_+ . Comme f(x) change de signe entre 0 et 3, la fonction f s'annule sur [0; 3].
- 3) a) Le programme renvoie une approximation par excès à 10^{-2} de α . En effet, le programme quitte la boucle conditionnelle pour y > 0 donc pour une valeur de f(x) > 0.
 - b) La valeur affichée est 1,51. Donc $1,50 \le \alpha \le 1,51$
 - c) Il suffit de modifier l'incrémentation de x, avec l'instruction x = x + 0,001. On trouve alors : 1,506. Donc $1,505 \le \alpha \le 1,506$

Annexe exercice 3

Nom:

Prénom:

