Les ensembles de nombres -Correction

EXERCICE 1

Différents nombres

Voir cours. On obtient le tableau suivant :

	$\frac{1}{3}$	$\frac{4}{5}$	$\sqrt{2}$	0,272	$\frac{22}{7}$	$\frac{14}{2}$	-6,5	π
N	non	non	non	non	non	oui	non	non
Z	non	non	non	non	non	oui	non	non
\mathbb{D}	non	oui	non	oui	non	oui	oui	non
Q	oui	oui	non	oui	oui	oui	oui	non
\mathbb{R}	oui	oui	oui	oui	oui	oui	oui	oui

EXERCICE 2

1,07 < 1,1009 < 1,109 < 1,7 < 1,81 < 1,81

On a: 1,102 < 1,1 < 1,12.

EXERCICE 3

$$\frac{255}{35} = \frac{51}{7} \quad ; \quad \frac{26}{65} = \frac{2}{5} \quad ; \quad \frac{450}{756} = \frac{25}{42} \quad ; \quad \frac{2415}{966} = \frac{5}{2} \quad ; \quad \frac{5863}{1144} = \frac{41}{8}$$

EXERCICE 4

Une fraction décimale est une fraction du type : $\frac{a}{10^n}$.

$$\frac{a}{b} = \frac{a+21}{b+30} \iff ab+30a = ab+21b \iff 30a = 21b \iff \frac{a}{b} = \frac{21}{30} = \frac{7}{10}$$

EXERCICE 5

Un nombre rationnel q est un nombre décimal si q peut se mettre sous la forme d'une fraction décimale ou si le dénominateur de la fraction irréductible de q ne comporte que des puissances de 2 ou des puissances de 5.

$$\frac{17}{8}$$
 décimal car $8=2^3$; $\frac{8}{17}$ non décimal car 17 est premier

$$\frac{2794}{55} = \frac{254}{5} = \frac{508}{10}$$
 décimal ; $\frac{1096}{152} = \frac{137}{19}$ non décimal car 19 est premier.

EXERCICE 6

7 ne divise pas 22. Comme la fraction n'est pas un nombre décimal, elle possède un nombre de chiffres après la virgule infini. Les restes possibles des différentes divisions par 7 ne peuvent être que 1, 2, 3, 4, 5 et 6. Au bout de la 7^e division un des restes se répétera créant ainsi une série de chiffres qui se répétera à l'infini.

$$\frac{22}{7} = 3,\overline{142\,857}$$

On peut généraliser ce principe car lorsque l'on divise a par b, après b divisions un reste se répétera nécessairement.

EXERCICE 7

On cherche le chiffre des unités des deux produits suivants :

$$208\ 341 \times 99\ 532$$
 $66\ 317 \times 312\ 689$

Le chiffre des unités du premier produit est 2 (2 \times 1) tandis que le chiffre des unités du second produit est 3 (7 \times 9 = 63). Ces deux fractions ne sont donc pas égales!

Ces deux fractions représente l'encadrement à 10^{-10} du nombre π .

EXERCICE 8

$$0.005 94 = 5.94 \times 10^{-3}$$

 $124 000 000 = 1.27 \times 10^{8}$
 $1 450 = 1.45 \times 10^{3}$

$$3 140 000 000 000 = 3, 14 \times 10^{12}$$

 $0,000 001 5 = 1, 5 \times 10^{-6}$
 $362 \times 10^5 = 3, 62 \times 10^7$

EXERCICE 9

$$1,457 \times 10^6 = 1457000$$

 $2,395 \times 10^{-1} = 0,2395$
 $5,3 \times 10^{11} = 530000000000$

$$0.06835 \times 10^4 = 683.5$$

 $35.8 \times 10^{-3} = 0.0358$

EXERCICE 10

On obtient le tableau suivant et $\sqrt{5} \approx 2,2361 \text{ à } 10^{-4} \text{ près.}$

121	Approximation:	Approximation:		
	2 chiffres après la	4 chiffres après la		
17	virgule	virgule		
Par excès	7,12	7,1177		
Par défaut	7,11	7,1176		
Au plus près	7,12	7,1176		

EXERCICE 11

Diviseurs

On décompose 120 en facteurs premiers. On trouve : $120 = 2^3 \times 3 \times 5$.

Il y a donc : (3+1)(1+1)(1+1) = 16 diviseurs.

On peut proposer un algorithme qui est basé sur le fait que si d divise N, alors N = kd donc le quotient k est aussi un diviseur de N. Ainsi lorsque l'on trouve un diviseur d'un entier N, on en trouve un second.

On remplit le tableau ci-contre. La première colonne s'arrête lorsque le diviseur d est supérieur à \sqrt{N} .

Par exemple avec 120:

diviseur d	quotient k
1	120
2	60
3	40
4	30
5	24
6	20
8	15
10	12

On trouve alors les 16 diviseurs de 120 :

EXERCICE 12

Problème

1) Soit *x* le nombre ajouté. On a alors :

$$\frac{19+x}{39+x} = 2 \times \frac{19}{39} \iff \frac{19+x}{39+x} = \frac{38}{39}$$
$$39(19+x) = 38(39+x) \iff 741+39x = 1482+38x$$
$$39x - 38x = 1482 - 741 \iff x = 741$$

- 2) **Proposition fausse**. Contre-exemple : si $x = \frac{3}{2}$ alors 2x = 3 est un entier tandis que x ne l'est pas.
 - **Proposition vraie.** En effet si $\frac{x}{2} = n$ alors x = 2n est bien entier.
 - **Proposition fausse.** Contre-exemple : si x = -1 on a x + 1 = 0 qui est un naturel tandis que x ne l'est pas.

EXERCICE 13

Multiplication

- 1) Si l'on calcule le chiffre des unités du produit, on obtient $6 \times 8 = 48$ donc le chiffre des unités doit être 8 ce qui n'est pas le cas dans la valeur donnée.
- 2) 35×10^{14} et 48×10^{14} sont deux nombres commençant respectivement par 35 et 48 suivis par 14 zéros. Le nombre A possède donc 16 chiffres.

3)
$$A = (5 \times 10^7 + 6) \times (7 \times 10^7 + 8)$$

= $5 \times 7 \times 10^{14} + 5 \times 8 \times 10^7 + 6 \times 7 \times 10^7 + 6 \times 8$
= $35 \times 10^{14} + (40 + 35) \times 10^7 + 48 = 35 \times 10^{14} + 75 \times 10^7 + 48$
= 3500000750000048

4) On trouve les produits suivants :

$$48\ 506 \times 505 = 24\ 495\ 530$$
 $48\ 506 \times 149 = 7\ 227\ 394$ $557 \times 505 = 281\ 285$ $557 \times 149 = 82\ 993$

On a alors:

$$B = (48506 \times 10^{3} + 557)(505 \times 10^{3} + 149)$$

$$= 48506 \times 505 \times 10^{6} + 48506 \times 149 \times 10^{3} + 557 \times 505 \times 10^{3} + 557 \times 149$$

$$= 24495530 \times 10^{6} + 7227394 \times 10^{3} + 281285 \times 10^{3} + 82993$$

EXERCICE 14

Rationnels non décimaux

1) $\frac{1}{7}$ non décimal car 7 est premier.

$$\frac{27}{8}$$
 décimal car $8 = 2^3$

$$\frac{91}{7} = 13$$
 décimal car entier.

$$\frac{42}{17}$$
 non décimal car 17 est premier.

2) a)
$$\frac{1}{7} = 0$$
, $\overline{142857}$

- b) La période est de 6 chiffres, comme $32 = 6 \times 5 + 2$, pour trouver la 32^e décimal, on prend 5 périodes puis le 2^e chiffre de la période soit : 4
- 3) Le but de cette question est de produire l'écriture décimale périodique de $\frac{42}{17}$
 - a) La 20^e décimal est 5.

b)
$$\frac{42}{17} = 2,\overline{470\,588\,235\,294\,117\,6}$$

c) Comme on divise par 17 et que la division ne « *tombe pas juste* », il n'existe que 16 restes possibles. Après 17 divisions on obtient nécessairement un reste déjà obtenu.

4) a)
$$100 a - a = 123, \overline{23} - 1, \overline{23} = 122$$

b) On a:
$$99a = 122$$
 donc $a = \frac{122}{99}$