Correction du contrôle

Du jeudi 21 mars 2024

Exercice 1

Équations diophantiennes

(9 points)

- 1) « Soit $a, b, c \in \mathbb{Z}^*$. Si a divise bc et si a est premier avec b alors a divise c. »
- 2) Corollaire du théorème de Bézout : « L'équation ax + by = c avec $a, b, c \in \mathbb{Z}$ admet des solutions entières si, et seulement si, c est un multiple de pgcd(a, b). » pgcd(15, 9) = 3 et 14 non multiple de 3 donc (E_1) n'admet pas de solution.
- 3) a) pgcd(10, 27) = 1 car: $27 = 10 \times 2 + 7$ (1) $2 \times (2)$ $10 \times 2 = 7 \times 2 + 7 - 1 = 7 \times 3 - 1$ $10 = 7 \times 1 + 3$ (2) $7 \times 3 = 10 \times 2 + 1$ $7 = 3 \times 2 + 1$ (3) $3 \times 2 = 7 - 1$ $2 \times (2)$ $10 \times 2 = 7 \times 2 + 7 - 1 = 7 \times 3 - 1$ $3 \times (1)$ $27 \times 3 = 10 \times 6 + 10 \times 2 + 1 = 10 \times 8 + 1$

Donc $10 \times (-8) + 27 \times 3 = 1$ d'où (-8; 3) solution de (E_2) .

b) Soit (x; y) une solution générale de (E_2) . Par soustraction terme à terme de la solution générale et de la solution particulière on obtient :

$$10(x+8) + 27(y-3) = 0 \Leftrightarrow 10(x+8) = 27(-y+3)$$
 (E₂)

27 divise 10(x + 8), or 10 et 27 sont premiers entre eux, d'après le théorème de Gauss, 27 divise (x + 8). On a donc x + 8 = 27k, $k \in \mathbb{Z}$.

En remplaçant dans (E'₂), on a : -y + 3 = 10k.

Les couples (x; y) sont de la forme : $\begin{cases} x = -8 + 27k \\ y = 3 - 10k \end{cases}, k \in \mathbb{Z}$

On vérifie que ces couples sont bien solutions de (E'₂).

- 4) a) (3; 2) est solution de (E₃) car : $221 \times 3 331 \times 2 = 663 662 = 1$
 - b) Les solutions sont alors de la forme : $\begin{cases} x = 3 + 331k \\ y = 2 + 221k \end{cases}, k \in \mathbb{Z}$

Exercice 2

Restes chinois (11 points)

- 1) a) Théorème de Bézout : « a et b sont premiers entre eux si, et seulement si, il existe un couple d'entiers relatifs (u, v) tel que au + bv = 1. » pgcd(19, 12) = 1, d'après le théorème de Bézout, il existe (u, v) tel que 19u + 12v = 1
 - b) $19u + 12v = 1 \iff 12v = 1 19u$, on a alors:

$$n_0 = 6 \times 19u + 13 \times (1 - 19u) \Leftrightarrow n_0 = 19(-7u) + 13 \Rightarrow n_0 \equiv 13 (19).$$

De même $19u + 12v = 1 \Leftrightarrow 19u = 1 - 12v$, on a alors :

$$n_0 = 6 \times (1 - 12v) + 13 \times 12v \iff n_0 = 12(7v) + 6 \implies n_0 \equiv 6 (12).$$

Donc n_0 est solution de (S).

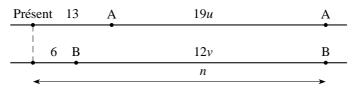
- c) 19(-5) + 12(8) = -95 + 96 = 1 donc (-5; 8) est solution de 19u + 12v = 1On obtient alors : $n_0 = 6 \times 19(-5) + 13 \times 12(8) = 678$
- 2) Corollaire du théorème de Gauss : « Si b et c divise a et si b et c sont premiers entre eux alors bc divise a »

Soit n une solution de (S), par soustraction terme à terme avec n_0 , on obtient :

$$\begin{cases} n - n_0 \equiv 0 \ (19) \\ n - n_0 \equiv 0 \ (12) \end{cases}$$

19 et 12 divise $(n - n_0)$, or 19 et 12 sont premiers entre eux donc d'après le corollaire du théorème de Gauss, $19 \times 12 = 228$ divise $(n - n_0)$. On a alors $n - n_0 = 0$ (228).

- 3) D'après la question 1 c), on a $n_0 = 678 = 228 \times 3 6 \equiv -6$ (228). D'après la question précédente $n \equiv n_0 \equiv -6$ (228), donc n = -6 + 228k, $k \in \mathbb{Z}$.
- 4) Soit *u* et *v* le nombre de périodes entière que les comètes ont effectué avant d'être visible la même année. On peut faire le schéma suivant :



n vérifie donc le système (S) : $\begin{cases} n \equiv 13 \ (19) \\ n \equiv 6 \ (12) \end{cases}$

En prenant k = 1, on obtient : n = -6 + 228 = 222 ans.

Il faudra 222 ans pour observer les deux comètes la même année.