Answers to exercises

Chapter 1

EXERCISE 1

- a) $u_1 = 3$, $u_2 = 5$, $u_3 = 14$, $u_{n+2} = 9u_n + 4$
- b) We can write the following algorithm:

```
Variables: N, I integers U real number

Inputs and initialization

Read N

1 \rightarrow U

Processing

for I from 1 to N do

3U - 1 \rightarrow U

end

Output: Print U
```

n	5	10	15
u_n	122	29 252	7 174 454

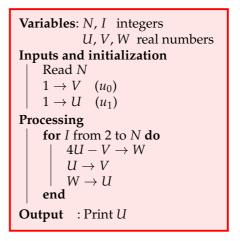
c) We may propose two algorithms, one does not store all the terms of (u_n) and the other stores them in a list.

```
\begin{tabular}{ll} \textbf{Variables}: $I$: integer & $U$: real number \\ $L_1$: list \\ \hline \textbf{Inputs and initialization} \\ & 1 \rightarrow U \\ & \text{Clear } L_1 \\ \hline \textbf{Processing} \\ & \textbf{for } I$ from 1 to 10 <math>\textbf{do} \\ & 3U-1 \rightarrow U \\ & U \rightarrow L_1(I) \\ & \textbf{end} \\ \hline \textbf{Output} : Print $L_1$ \\ \end{tabular}
```

EXERCISE 2 -

- a) $u_2 = 14$, $u_3 = 52$, $u_4 = 194$
- b) The algorithm opposite is an example :

	п	6	10		
ĺ	u_n	2702	524 174		



a) $u_{n+1} - u_n = -3 < 0$ (*u_n*) is decreasing

b)
$$u_{n+1} - u_n = \frac{1}{(n+3)(n+2)} > 0$$
 (u_n) is decreasing

c)
$$\frac{u_{n+1}}{u_n} = 2 > 1$$
 (u_n) is increasing

d) (u_n) is neither increasing nor decreasing.

EXERCISE 4

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{n^2} \leqslant 1 \quad (u_n) \text{ is decreasing}$$

because $n \ge 2 \Leftrightarrow n^2 \ge 2n \ge n+1$

EXERCISE 5

a)
$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{n^2} \le 1$$
 (*u_n*) is decreasing.

because $n \geqslant 4 \Leftrightarrow n^2 \geqslant 4n \Leftrightarrow n^2 + n^2 \geqslant n^2 + 4n \Leftrightarrow 2n^2 \geqslant n^2 + 2n + 1$

b)
$$u_{n+1} - u_n = \frac{1}{2^{n+1}} \ge 0$$
 (*u_n*) is increasing

EXERCISE 6

$$u_{n+1} - u_n = \frac{1}{2^{n+1}} - 1 \le 0$$
 (*u_n*) is decreasing

because
$$2^{n+1} \ge 2 \iff \frac{1}{2^{n+1}} - 1 \le \frac{1}{2} - 1 \le -\frac{1}{2}$$

Exercise 7 ·

a) **True proposition :** we can add two equalities

$$u_{n+1} \geqslant u_n$$
 and $v_{n+1} \geqslant v_n \Rightarrow u_{n+1} + v_{n+1} \geqslant u_n + v_n$

b) **False proposition :** we can multiply two inequalities only if the terms are positive. The question does not specify that this is the case.

Counterexample : Let (u_n) and (v_n) be sequences defined on \mathbb{N}^* by $u_n = n^2$ and $v_n = -\frac{1}{n}$. Both sequences are increasing. The sequence (w_n) defined by $w_n = u_n \times v_n = -n$ is clearly decreasing.

EXERCISE 8

a)
$$u_n = 2 + \frac{1}{2}n$$

b)
$$u_5 = u_2 + 3r \Leftrightarrow r = \frac{u_5 - u_2}{3} = -18$$
. Thus: $u_{20} = u_2 + 18r = -283$

c)
$$u_{20} = u_1 + 19r = 55$$
 then $S = 20 \times \frac{-2 + 55}{2} = 530$

d)
$$u_{25} = u_0 + 25r = -53$$
 and $u_{125} = u_0 + 125r = -253$. Thus:
$$S = 101 \times \frac{-53 - 253}{2} = -15453$$

a)
$$u_1 = \frac{1}{2}$$
, $u_2 = \frac{1}{3}$, $u_3 = \frac{1}{4}$, $u_4 = \frac{1}{5}$.

We can then surmise that : $u_n = \frac{1}{n+1}$

b)
$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1 + u_n}{u_n} - \frac{1}{u_n} = 1$$

 $\forall n \in \mathbb{N}, \ v_{n+1} - v_n = 1 \ \text{the sequence} \ (v_n) \ \text{is arithmetic with a common difference of 1 and a 1st term of} \ v_0 = 1$

c)
$$v_n = 1 + n$$
 then $u_n = \frac{1}{v_n} = \frac{1}{n+1}$ the conjecture is verified.

EXERCISE 10

a)
$$u_n = 5 \left(\frac{2}{5}\right)^{n-1}$$

b)
$$u_9 = u_4 \times q^5 \iff q^5 = \frac{u_9}{u_4} = 25\sqrt{5} = \sqrt{5^5}$$

then
$$q = \sqrt{5}$$
 and $u_{14} = u_4 \times q^{10} = 5^5 = 3125$

c)
$$S = u_0 \frac{1 - q^{13}}{1 - q}$$
 then $u_0 = \frac{S(1 - q)}{1 - q^{13}} = \frac{24573}{8191} = 3$

Exercise 11 -

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{3^{n+2}} \times \frac{3^{n+1}}{2^n} = \frac{2}{3}$$

The sequence (u_n) is geometric with a common ration of $q = \frac{2}{3}$ and a first term of $u_0 = \frac{1}{3}$

The sequence (u_n) converges to 0 because -1 < q < 1

EXERCISE 12 -

- a) See the course
- b) B is the sum of the terms of an arithmetic sequence with a common difference of $\frac{1}{2}$ and a first term of $\frac{1}{2}$

There are:
$$\frac{\frac{1}{2} + 10}{\frac{1}{2}} + 1 = 20$$
 terms. $B = 20 \times \frac{\frac{1}{2} + 10}{2} = 105$

c) See the course

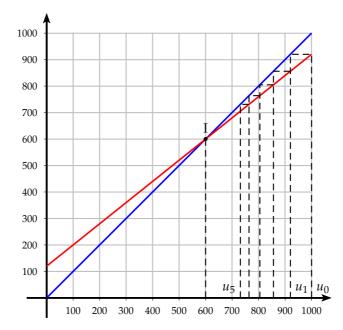
a) $v_{n+1} = u_{n+1} - 6 = \frac{1}{3}u_n + 4 - 6 = \frac{1}{3}(u_n - 6) = \frac{1}{3}v_n$ $\forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = \frac{1}{3}, \text{ the sequence } (v_n) \text{ is geometric with a common ratio}$ $q = \frac{1}{3} \text{ and of 1st term } v_0 = -5$

b)
$$v_n = -5\left(\frac{1}{3}\right)^n$$
 then $u_n = -5\left(\frac{1}{3}\right)^n + 6$.

c)
$$\lim_{n\to+\infty} \left(\frac{1}{3}\right)^n = 0$$
 car $-1 < \frac{1}{3} < 1$. The sequence (u_n) converges to 6.

EXERCISE 14

- 1) a) $p_{n+1} = 0.8 p_n + 120$
 - b) Selecting a suitable viewing window, we plot the lines of equations y = x and y = 0.8x + 120



The sequence (p_n) seems to be decreasing and to converge to 600.

- 2) a) $v_{n+1} = p_{n+1} 600 = 0.8p_n + 120 600 = 0.8(p_n 600) = 0.8v_n$ $\forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = 0.8$, the sequence (v_n) is geometric with a common ratio of 0.8 and a 1st term of $v_0 = 400$
 - b) $v_n = 400 \times 0.8^n$ then $p_n = 400 \times 0.8^n + 600$
 - c) $\lim_{n\to+\infty} 0.8^n = 0$ car -1 < 0.8 < 1. The sequence (p_n) converges to 600.

EXERCISE 15

a)
$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 3} = \frac{\frac{2u_n + 3}{u_n + 4} - 1}{\frac{2u_n + 3}{u_n + 4} + 3} = \frac{2u_n + 3 - u_n - 4}{2u_n + 3 + 3u_n + 12} = \frac{u_n - 1}{5u_n + 15}$$

$$v_{n+1} = \frac{u_n - 1}{5(u_n + 3)} = \frac{1}{5}v_n$$

 $\forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = \frac{1}{5}$, the sequence (v_n) is geometric with a common ratio of $\frac{1}{5}$ and a 1st term of $v_0 = -\frac{1}{3}$

b)
$$v_n = -\frac{1}{3} \left(\frac{1}{5}\right)^n$$

$$v_n = \frac{u_n - 1}{u_n + 3} \iff u_n = \frac{3v_n + 1}{1 - v_n} \iff u_n = \frac{-\left(\frac{1}{5}\right)^n + 1}{1 + \frac{1}{3}\left(\frac{1}{5}\right)^n} = \frac{-1 + 5^n}{5^n + \frac{1}{3}}$$

c)
$$\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$$
 because $-1 < \frac{1}{5} < 1$

We then have : $\lim_{n\to+\infty} v_n = 0$ and $\lim_{n\to+\infty} u_n = 1$

EXERCISE 16

1)
$$u_2 = u_1 - \frac{1}{4}u_0 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$u_2 - u_1 = \frac{1}{4} \quad \text{and} \quad u_1 - u_0 = \frac{3}{2}$$

$$u_2 - u_1 \neq u_1 - u_0, \text{ the sequence } (u_n) \text{ is not arithmetic}$$

$$\frac{u_2}{u_1} = \frac{3}{2} \text{ and } \frac{u_1}{u_0} = -\frac{1}{2} \quad \text{then } \frac{u_2}{u_1} \neq \frac{u_1}{u_0},$$

hence the sequence (u_n) is not geometric.

2) a)
$$v_0 = u_1 - \frac{1}{2}u_0 = 1$$

b)
$$v_{n+1} = u_{n+2} - \frac{1}{2}u_{n+1} = u_{n+1} - \frac{1}{4}u_n - \frac{1}{2}u_{n+1} = \frac{1}{2}u_{n+1} - \frac{1}{4}u_n$$

 $v_{n+1} = \frac{1}{2}\left(u_{n+1} - \frac{1}{2}u_n\right) = \frac{1}{2}v_n$

c)
$$\forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = \frac{1}{2}$$
. The sequence (v_n) is geometric with a common ratio of $\frac{1}{2}$ and a 1st term of 1.

d)
$$v_n = \left(\frac{1}{2}\right)^n$$

3) a)
$$w_0 = \frac{u_0}{v_0} = -1$$

b)
$$w_{n+1} = \frac{u_{n+1}}{v_{n+1}} = \frac{v_n + \frac{1}{2}u_n}{\frac{1}{2}v_n} = \frac{2v_n + u_n}{v_n}$$

c)
$$w_{n+1} = \frac{2v_n}{v_n} + \frac{u_n}{v_n} = w_n + 2$$

- d) $\forall n \in \mathbb{N}$, $w_{n+1} w_n = 2$. The sequence (w_n) is arithmetic with a common difference of 2 and a 1st term of $w_0 = -1$. We then have : $w_n = -1 + 2n$
- 4) $u_n = w_n \times v_n = \frac{2n-1}{2^n}$
- 5) We can write the following algorithm:

Variables: I , N integers Inputs and initialization Read N
$-1 \rightarrow S$
Processing
for <i>I</i> from 1 to <i>N</i> do
1 2I - 1
$S + \frac{2I - 1}{2^I} \to S$
end
Output : Print S

n	6	10	15	
u_n	1,7656	1,9775	1,9990	

It can be conjectured that the sequence (u_n) converges to 2

↑ This conjecture can be proven by mathematics induction :

$$\forall n \in \mathbb{N}, \ S_n = 2 - \frac{2n-3}{2^n}$$

Exercise 17

- 1) $10w_{10} = 11w_9 + 1 = 11 \times 19 + 1 = 210$. So $w_{10} = 21$
- 2) The sequence (w_n) seems to be arithmetic with a common difference of 2 and a 1st term of 1.

$$w_n = 1 + 2n$$
 so $w_{2009} = 1 + 2 \times 2009 = 4019$

⚠ We could prove this conjecture by induction.

EXERCISE 18 -

1) Let *P* be a cubic polynomial, we then have :

$$P(x) = ax^3 + bx^2 + cx + d$$

 $a \neq 0$, b, c and d are real numbers.

Calculate the quantity : D(x) = P(x+1) - P(x)

$$D(x) = a(x+1)^3 + b(x+1)^2 + c(x+1) + d - (ax^3 + bx^2 + cx + d)$$

$$= a(x^3 + 3x^2 + 3x + 1) + b(x^2 + 2x + 1) + cx + c + d - ax^3 - bx^2 - cx - d$$

$$= ax^3 + 3ax^2 + 3ax + a + bx^2 + 2bx + b + c - ax^3 - bx^2$$

$$= 3ax^2 + (3a + 2b)x + a + b + c$$

Now we want $D(x)=x^2\,$, by identifying the coefficients the following system is obtained :

$$\begin{cases} 3a = 1 \\ 3a + 2b = 0 \\ a + b + c = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ b = -\frac{1}{2} \\ c = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6} \end{cases}$$

We can therefore propose the following polynomial (taking d = 0):

$$P(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

2) The equalities can be completed using the property P:

$$P(1) - P(0) = 0^{2} = 0$$

$$P(2) - P(1) = 1^{2} = 1$$

$$P(3) - P(2) = 2^{2} = 4$$

$$\dots = \dots$$

$$P(n+1) - P(n) = n^{2}$$

3) Adding the equalities term by term:

$$[P(1) - P(0)] + [P(2) - P(1)] + \dots + [P(n+1) - P(n)] = 0^2 + 1^2 + \dots + n^2$$

All the terms cancel out except $P(n+1)$ and $P(0)$

$$P(n+1) - P(0) = 1^2 + 2^2 + \dots + n^2$$

By calculating P(n+1) - P(0) we find that

$$P(n+1) - P(0) = \frac{1}{3}(n+1)^3 - \frac{1}{2}(n+1)^2 + \frac{1}{6}(n+1)$$

$$= \frac{(n+1)[2(n+1)^2 - 3(n+1) + 1]}{6}$$

$$= \frac{(n+1)(2n^2 + 4n + 2 - 3n - 3 + 1)}{6}$$

$$= \frac{(n+1)(2n^2 + n)}{6}$$

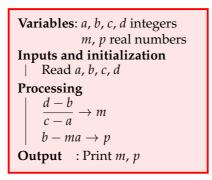
$$= \frac{n(n+1)(2n+1)}{6}$$

This completes the proof without using induction!

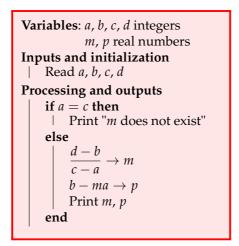
EXERCISE 19

a) Algorithm for calculating the slope and the constant coefficient of a line through two points A and B

$$(AB): y = mx + p$$



- b) We enter the program.
- c) We can suggest:



No answer

EXERCISE 21

1) We have the following table:

Init: initialization, B: loop

	Init	B nº 1	B nº 2	B nº 3
и	1	3	6	11
S	1	4	10	21
i	0	1	2	3

2) We complete the table

n	0	1	2	3	4	5
и	1	3	6	11	20	37
S	1	4	10	21	41	78

3) We complete the table:

n	0	1	2	3	4	5
u_n	1	3	6	11	20	37
$u_n - n$	1	2	4	8	16	32

We can conjecture that :: $\forall n \in \mathbb{N}, \ u_n - n = 2^n$

4) Let prove us this conjecture. Let : $v_n = u_n - n$

$$v_{n+1} = u_{n+1} - (n+1) = 2u_n + 1 - n - n - 1 = 2u_n - 2n = 2(u_n - n) = 2v_n$$

$$\forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = 2$$

The sequence (v_n) is geometric with a common ration of 2 and a 1st term of 1. Then $v_n = 2^n$. The conjecture is proven.

Therefore
$$u_n - n = 2^n \Leftrightarrow u_n = 2^n + n$$

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

$$= 2^0 + (2^1 + 1) + (2^2 + 2) + \dots + (2^n + n)$$

$$= (2^0 + 2^1 + 2^2 + \dots + 2^n) + (1 + 2 + \dots + n)$$

$$= \frac{1 - 2^{n+1}}{1 - 2} + \frac{n(n+1)}{2}$$

$$= 2^{n+1} - 1 + \frac{n(n+1)}{2}$$

Note that (S_n) is the sum of the terms of a geometric sequence with a common ratio of 2 and of an arithmetic sequence with a common difference of 1.