Contrôle de mathématiques

Lundi 12 octobre 2020

Exercice 1

Produits de termes (9 points)

Soit la suite (u_n) définie, pour $n \ge 1$, par : $u_n = \frac{n(n+2)}{(n+1)^2}$.

La suite (v_n) est définie pour $n \ge 1$ par : $v_n = u_1 \times u_2 \times ... \times u_n$

- 1) Déterminer u_1 , u_2 , u_3 puis v_1 , v_2 , v_3 .
- 2) a) Montrer que, pour $n \ge 1$, $u_n = 1 \frac{1}{(n+1)^2}$.
 - b) Montrer que $u_{n+1} u_n = \frac{2n+3}{(n+1)^2(n+2)^2}$. En déduire la monotonie de la suite (u_n) .
 - c) Montrer que, pour tout $n \ge 1$, $0 < u_n < 1$.
- 3) a) Justifier que, pour tout $n \ge 1$, $v_{n+1} = v_n \times u_{n+1}$. En déduire que la suite (v_n) est décroissante.
 - b) On considère la fonction v(n) en Python incomplète. Recopier et compléter cet algorithme pour qu'il retourne la valeur de v_n .

Rentrer cet algorithme dans la calculatrice puis recopier et compléter le tableau :

n	3	10	100	1000
v(n)	0,625			

c) Conjecturer la convergence de la suite (v_n) .

Exercice 2

Somme de termes (4 points)

- 1) Soit la somme $S = 6 + 12 + 18 + 24 + \cdots + 2520$
 - a) Déterminer le nombre de termes de la somme S.
 - b) Calculer la valeur de la somme S en rappelant la formule utilisée.
- 2) Soit $n \in \mathbb{N}$ et la somme $S_n = 9 + \frac{9}{4} + \frac{9}{4^2} + \dots + \frac{9}{4^n}$
 - a) Déterminer l'expression de S_n en fonction de n. On rappellera la formule utilisée.
 - b) Déterminer $\lim_{n\to+\infty} S_n$.

PAUL MILAN 1 TERMINALE MATHS SPÉ

Exercice 3

Population de tigres

(5 points)

On s'intéresse à l'évolution d'une population de tigres dans une réserve en naturelle. En 2019, il y avait 100 tigres. Une étude à montré que chaque année, 10 % de la population de tigres meurt. En conséquence on introduit, chaque année, 5 nouveaux tigres à la réserve. On note u_n le nombre de tigres en 2019 + n.

- 1) Déterminer le nombre de tigres dans la réserve en 2020.
- 2) Donner la valeur de u_0 et justifier que pour tout $n \in \mathbb{N}$, $u_{n+1} = 0,9u_n + 5$.
- 3) On pose $v_n = u_n 50$
 - a) Montrer que (v_n) est géométrique dont on précisera la raison et le premier terme.
 - b) Déterminer l'expression de v_n puis de u_n en fonction de n.
 - c) En déduire la limite de la suite (u_n) .
 - d) Interpréter dans le contexte les variations et la limites de la suite (u_n) .

Exercice 4

Récurrence (2 points)

Soit la suite (u_n) définie sur \mathbb{N} par : $\begin{cases} u_0 = 4 \\ u_{n+1} = 2u_n + 3 \end{cases}$

- 1) Montrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n = 7 \times 2^n 3$
- 2) Déterminer la limite de la suite (u_n)