Correction contrôle de mathématiques Du lundi 28 novembre 2022

Exercice 1

QCM (5 points)

1) **Réponse c**) $f(x) \stackrel{\div x^2}{=} \frac{-2 + \frac{3}{x} + \frac{1}{x^2}}{1 + \frac{1}{x^2}}$ donc $\lim_{x \to \pm \infty} f(x) = -2$,

d'où une asymptote horizontale d'équation y = -2.

- 2) **Réponse a**) $\lim_{x \to -\infty} e^x = 0$ par somme et quotient $\lim_{x \to -\infty} \frac{e^x + 1}{e^x 1} = -1$
- 3) **Réponse c**) $\lim_{x \to 0} -\frac{1}{x^2} = -\infty$ $\lim_{x \to -\infty} e^x = 0$ Par composition $\lim_{x \to 0} f(x) = 0 = f(0) \implies f \text{ continue en } 0.$
 - a) et b) sont fausse car $\lim_{x \to \pm \infty} -\frac{1}{x^2} = 0$ Par composition $\lim_{x \to 0} e^x = 1$ Par composition
- 4) **Réponse b)** $f'(x) = \frac{1e^x xe^x}{(e^x)^2} = \frac{e^x(1-x)}{e^{2x}} = (1-x)e^{-x}$.
- 5) **Réponse d**) Si l'on dresse le tableau de variation à partir du signe de la fonction dérivée tracée, on a :

x	-2	-1	1	3	4
f'(x)	_	- 0	+ 0	- 0	+
f(x)		\			

Selon ce tableau seule la proposition **d**) est vraie (minimum en 3).

Exercice 2

Équation du troisième degré

(5 points)

$$f(x) = -x^3 + 3x + 9$$

1)
$$f(x) = x^3 \left(-1 + \frac{3}{x^2} + \frac{9}{x^3}\right)$$
 d'où
$$\lim_{x \to +\infty} x^3 = +\infty$$
$$\lim_{x \to +\infty} -1 + \frac{3}{x^2} + \frac{9}{x^3} = -1$$
 produit
$$\lim_{x \to +\infty} f(x) = -\infty$$

2) f est dérivable sur \mathbb{R} car f est un polynôme.

$$f'(x) = -3x^2 + 3 = 3(1 - x^2) = 3(1 - x)(1 + x)$$

3)
$$f'(x) = 0 \iff x = 1 \text{ ou } x = -1.$$

PAUL MILAN 1 TERMINALE MATHS SPÉ

х	$-\infty$	_	-1		1		+∞
f'(x)		_	0	+	0	_	
f(x)		_	7		11		-∞

- 4) Sur] $-\infty$; 1[, $f(x) \ge 7$ donc f ne peut s'annuler.
 - Sur $[1; +\infty[$, f est continue (car dérivable), monotone (décroissante) et change de signe car f(1) = 11 et $\lim_{x \to +\infty} f(x) = -\infty$. D'après le TVI, l'équation f(x) = 0 admet une unique solution α .
 - Conclusion : l'équation f(x) = 0 admet une unique solution α sur \mathbb{R} .
- 5) On peut calculer f(3) = -9 donc f change de signe sur l'intervalle [1 ; 3]. À l'aide l'algorithme de dichotomie, on trouve : 2,553 < α < 2,554.

D'après le tableau de variation, on a : $\frac{x}{f(x)} = -\infty$

х	$-\infty$		α	+∞
f(x)		+	0	_

Exercice 3

Limites (5 points)

1) Soit
$$\frac{x^2 + 3}{1 - x} \stackrel{\dot{=}}{=} \frac{x + \frac{3}{x}}{\frac{1}{x} + 1}$$
 d'où $\lim_{x \to +\infty} x + \frac{3}{x} = +\infty$ $\lim_{x \to +\infty} \frac{1}{x} - 1 = -1$ Par quotient $\lim_{x \to +\infty} \frac{x^2 + 3}{1 - x} = -\infty$

2) $\lim_{x \to -\infty} e^x = 0$ par produits, sommes et quotient $\lim_{x \to -\infty} \frac{3 - 5e^x}{1 + 2e^x} = 3$.

3)
$$\lim_{x\to 0} e^x - 2 = -1 \\ \lim_{x\to 0} x^2 = 0^+$$
 Par quotient
$$\lim_{x\to 0} \frac{e^x - 2}{x^2} = -\infty$$

4)
$$\lim_{x \to +2^+} x - 2 = 0^+ \stackrel{\text{quotient}}{\Rightarrow} \lim_{x \to +2^+} \frac{3}{x - 2} = +\infty.$$
 or $\lim_{x \to +\infty} \sqrt{x} = +\infty$ par composition $\lim_{x \to +2^+} \sqrt{\frac{3}{x - 2}} = +\infty$

5)
$$\lim_{x \to +\infty} \frac{x-1}{x+1} = \lim_{x \to +\infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = 1$$
 et $\lim_{x \to +\infty} 1 + \frac{1}{x} = 1$

D'après le théorème des gendarmes $\lim_{x\to +\infty} f(x) = 1$

Exercice 4

Fonction rationnelle

(5 points)

1) On a:
$$\lim_{x \to -\infty} f(x) = -\infty$$
, $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = +\infty$. \mathscr{C}_f admet une asymptote verticale d'équation $x = 1$.

2)
$$f'(x) = 1 - \frac{1}{(x-1)^2} = \frac{(x-1)^2 - 1}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}$$
.

3) $f'(x) = 0 \Leftrightarrow x = 0$ ou x = 2 et signe f'(x) = signe x(x - 2)

X	-∞	0	1		2	+∞
f'(x)	+	0	_	-	+	
f(x)	-∞	-4	<u>`</u> −∞	+∞	0	+∞

4)
$$f(3) = \frac{1}{2}$$
 et $f'(3) = \frac{3}{4}$ d'où:

$$T_3: y = f'(3)(x-3) + f(3) \Leftrightarrow y = \frac{3}{4}(x-3) + \frac{1}{2} \Leftrightarrow y = \frac{3}{4}x - \frac{7}{4}$$

5)
$$f'(x) = 2 \Leftrightarrow \frac{x(x-2)}{(x-1)^2} = 2 \Leftrightarrow x^2 - 2x = 2x^2 - 4x + 2 \Leftrightarrow x^2 - 2x + 2 = 0$$

$$\Delta = 4 - 8 = -4 < 0$$
 pas de solution.

La courbe \mathcal{C}_f n'admet pas de tangente parallèle à la droite d'équation y = 2x - 3.