Contrôle de mathématiques

Mercredi 27 Novembre 2024

Exercice 1

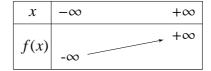
Vrai-Faux (5 points)

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse. **Chaque réponse doit être justifiée.** Une réponse non justifiées ne rapporte aucun points.

1) On considère la fonction f définie sur \mathbb{R} par : $f(x) = e^x + x$.

Proposition 1 : La fonction f a pour tableau de variations le tableau suivant :

(on justifiera la monotonie et les limites)



Proposition 2 : L'équation f(x) = -2 admet deux solutions.

- 2) **Proposition 3:** $\lim_{x \to +\infty} \frac{x x^2 + 2}{3x^2} = -\frac{1}{3}$.
- 3) Soit la fonction f telle que f(3) = 1 et f'(3) = 5. Soit (T) la tangente à la courbe \mathcal{C}_f au point d'abscisse 3.

Proposition 4 : Une équation de la tangente (T) est : y = 3x - 16

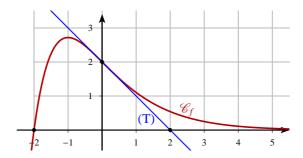
4) Soit la fonction f définie sur \mathbb{R} par : $f(x) = x e^{-x}$ de courbe \mathscr{C}_f . **Proposition 5 :** \mathscr{C}_f admet un point d'inflexion au point d'abscisse x = 2.

EXERCICE 2

Représentation graphique

(2 points)

Dans un repère, on a tracé la courbe \mathscr{C}_f d'une fonction f définie et dérivable sur \mathbb{R} telle que $\lim_{x\to +\infty} f(x) = 0$ et la tangente (T) au point d'abscisse 0.



À l'aide du graphique, répondre aux questions suivantes :

- 1) Donner les valeurs de f(0) et f'(0).
- 2) Résoudre l'équation f(x) = 0.
- 3) Déterminer suivant les valeurs de x la convexité de la fonction f.
- 4) La fonction f admet-elle un point d'inflexion? À quoi le reconnaît-on?

PAUL MILAN 1 TERMINALE MATHS SPÉ

Exercice 3

Limites (3 points)

- 1) Déterminer : $\lim_{x \to -\infty} \frac{3 5e^x}{1 + 2e^x}$
- 2) Soit la fonction f définie sur $[0; +\infty[$ par : $\begin{cases} f(x) = (x+1)e^{-\frac{1}{x}} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$
 - a) Déterminer $\lim_{x\to 0^+} f(x)$. Que peut-on en déduire pour la fonction f?
 - b) On a $\lim_{x\to 0^+} \frac{f(x)}{x} = 0$. Que peut-on en déduire pour la fonction f et la courbe \mathscr{C}_f ?

EXERCICE 4

Fonction (10 points)

On considère la fonction f définie sur $]-\infty$; 1[par : $f(x)=\frac{e^x}{x-1}$.

On admet que la fonction f est dérivable sur l'intervalle $]-\infty$; 1[. On appelle \mathscr{C}_f sa courbe représentative dans un repère.

- 1) a) Déterminer la limite de la fonction f en 1^- .
 - b) En déduire une interprétation graphique.
- 2) Déterminer la limite de la fonction f en $-\infty$.
- 3) a) Déterminer la fonction dérivée f' sur] $-\infty$; 1[.
 - b) Dresser, en justifiant, le tableau de variations de la fonction f sur $]-\infty$; 1[.
- 4) On admet que pour tout réel x de] $-\infty$; 1[, on a : $f''(x) = \frac{(x^2 4x + 5)e^x}{(x 1)^3}$.
 - a) Étudier la convexité de la fonction f sur $]-\infty$; 1[.
 - b) Déterminer l'équation de la tangente (T_0) à la courbe \mathscr{C}_f au point d'abscisse 0.
 - c) En déduire que, pour tout réel x de] $-\infty$; 1[, on a : $e^x \ge (-2x 1)(x 1)$.
- 5) a) Justifier que l'équation f(x) = -2 admet une unique solution α sur $]-\infty$; 1[.
 - b) À l'aide de la calculatrice, déterminer un encadrement de α d'amplitude 10^{-2} .