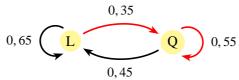
CHAPITRE 4: LES MATRICES 29 MAI 2019

Correction contrôle de mathématiques du jeudi 23 mai 2019

Exercice 1

Cartes de pêche (11 points)

1) On peut faire le graphe probabiliste suivant :



On a alors les relations suivantes : $\begin{cases} \ell_{n+1} = 0,65\ell_n + 0,45q_n \\ q_{n+1} = 0,35\ell_n + 0,55q_n \end{cases}$

La matrice cherchée est donc : $M = \begin{pmatrix} 0,65 & 0,45 \\ 0,35 & 0,55 \end{pmatrix}$.

2) Il faut calculer la proportion de pêcheurs au bout de deux ans soit la matrice P_2 .

$$P_{2} = MP_{1} = M^{2}P_{0} = \begin{pmatrix} 0,65 & 0,45 \\ 0,35 & 0,55 \end{pmatrix} \begin{pmatrix} 0,65 & 0,45 \\ 0,35 & 0,55 \end{pmatrix} \begin{pmatrix} 0,4 \\ 0,6 \end{pmatrix}$$

$$= \begin{pmatrix} 0,65^{2} + 0,45 \times 0,35 & 0,65 \times 0,45 + 0,45 \times 0,55 \\ 0,35 \times 0,65 + 0,55 \times 0,35 & 0,35 \times 0,45 + 0,55^{2} \end{pmatrix} \begin{pmatrix} 0,4 \\ 0,6 \end{pmatrix}$$

$$= \begin{pmatrix} 0,58 & 0,54 \\ 0,42 & 0,46 \end{pmatrix} \begin{pmatrix} 0,4 \\ 0,6 \end{pmatrix} = \begin{pmatrix} 0,556 \\ 0,444 \end{pmatrix}$$

En 2019, la proportion de pêcheurs achetant une carte de pêche avec quota est donc de 0,444.

- 3) a) D'après les lignes 5 et 6, on a : $TQ = QT = I_2$ donc la matrice Q est inversible et $Q^{-1} = T$
 - b) D'après la ligne 7 : D = TMQ, en multipliant à gauche par Q :

$$QD = QTMQ = QQ^{-1}MQ = I_2MQ = MQ$$
, en multipliant à droite par Q^{-1} :
 $QDQ^{-1} = MQQ^{-1} = MI_2 = M$.

Montrons par récurrence que : $\forall \in \mathbb{N}^*$, $M^n = QD^nQ^{-1}$.

Initialisation : n = 1, $M = QDQ^{-1}$. La proposition est initialisée.

Hérédité : Soit $n \in \mathbb{N}^*$, supposons que $M^n = QD^nQ^{-1}$, montrons que $M^{n+1} = QD^{n+1}Q^{-1}$.

 $HR: M^n = QD^nQ^{-1}$ en multipliant à gauche par M

$$M^{n+1} = MQD^{n}Q^{-1} \stackrel{M=QDQ^{-1}}{=} (QDQ^{-1})QD^{n}Q^{-1} = QD(I_{2}D^{n})Q^{-1} = QDD^{n}Q^{-1} = QD^{n+1}Q^{-1}$$

La proposition est héréditaire.

Par initialisation et hérédité : $\forall \in \mathbb{N}^*$, $M^n = QD^nQ^{-1}$.

4) a) On a $\forall n \in \mathbb{N}^*$, $P_{n+1} = MP_n$, on a alors de proche en proche :

$$P_n = MP_{n-1} = M^2P_{n-2} = \dots = M^{n-1}P_1 = M^nP_0.$$

b) On a:
$$P_n = \frac{1}{16} \begin{pmatrix} 9 + 7 \times 0, 2^n & 9 - 9 \times 0, 2^n \\ 7 - 7 \times 0, 2^n & 7 + 9 \times 0, 2^n \end{pmatrix} \begin{pmatrix} 0, 4 \\ 0, 6 \end{pmatrix}$$

En ne développant que la première ligne on a :

$$\ell_n = \frac{1}{16} [(9+7\times0,2^n)0, 4+(9-9\times0,2^n)0, 6] = \frac{1}{16} (3,6+2,8\times0,2^n+5,4-5,4\times0,2^n)$$
$$= \frac{1}{16} (9-2,6\times0,2^n) = \frac{9}{16} - \frac{2,6}{16} \times 0, 2^n = \frac{9}{16} - \frac{13}{80} \times 0, 2^n$$

5) La suite $(0, 2^n)$ est décroissante donc la suite $(-0, 2^n)$ est croissante.

On en déduit alors que la suite (ℓ_n) est croissante.

De plus
$$\lim_{n \to +\infty} 0, 2_n = 0$$
 car $-1 < 0, 2 < 1$, par somme et produit $\lim_{n \to +\infty} \ell_n = \frac{9}{16} = 0, 56$.

Conclusion : La suite (ℓ_n) est majorée par 0,56 et donc la proportion de pêcheurs achetant la carte de pêche libre ne peut dépasser 0,56 et par conséquent 0,6.

Exercice 2

Suite de Fibonacci (9 points)

1)
$$F^2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1+1 & 1+0 \\ 1+0 & 1+0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

 $F^3 = F^2 F = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2+1 & 2+0 \\ 1+1 & 1+0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$

2) Montrons par récurrence que : $\forall n \in \mathbb{N}^*, F^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$

Initialisation :
$$n = 1$$
, $F = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} u_2 & u_1 \\ u_1 & u_0 \end{pmatrix}$ car $u_2 = u_1 + u_0 = 1 + 0 = 1$.

La proposition est initialisée.

Hérédité : Soit
$$n \in \mathbb{N}^*$$
, supposons que $F^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$, montrons que $F^{n+1} = \begin{pmatrix} u_{n+2} & u_{n+1} \\ u_{n+1} & u_n \end{pmatrix}$.

$$F^{n+1} = F^n F \stackrel{\text{HR}}{=} \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} u_{n+1} + u_n & u_{n+1} \\ u_n + u_{n-1} & u_n \end{pmatrix} = \begin{pmatrix} u_{n+2} & u_{n+1} \\ u_{n+1} & u_n \end{pmatrix}$$

car $u_{n+2} = u_{n+1} + u_n$ et $u_{n+1} = u_n + u_{n-1}$. La proposition est héréditaire.

Par initialisation et hérédité :
$$\forall n \in \mathbb{N}^*, F^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$$

3) a) En traduisant cette égalité, on a :

$$\begin{pmatrix} u_{2n+3} & u_{2n+2} \\ u_{2n+2} & u_{2n+1} \end{pmatrix} = \begin{pmatrix} u_{n+3} & u_{n+2} \\ u_{n+2} & u_{n+1} \end{pmatrix} \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix} = \begin{pmatrix} \dots & \dots \\ u_{n+2}u_{n+1} + u_{n+1}u_n & \dots \end{pmatrix}$$

On a alors: $u_{2n+2} = u_{n+2} \times u_{n+1} + u_{n+1} \times u_n$ (1).

b) De $u_{n+1} = u_{n+2} - u_n$, en remplaçant dans (1), on a :

$$u_{2n+2} = u_{n+2}(u_{n+2} - u_n) + (u_{n+2} - u_n)u_n = u_{n+2}^2 - u_n u_{n+2} + u_{n+2}u_n - u_n^2 = u_{n+2}^2 - u_n^2.$$

4) En posant $2n + 2 = 12 \Leftrightarrow n = 5$ on obtient à l'aide de la question 3 :

$$u_{12} = u_{5+2}^2 - u_5^2 = u_7^2 - u_5^2$$
 on obtient facilement $u_5 = 5$ et $u_7 = 13$

On a alors comme
$$144 = 12^2$$
: $12^2 = 13^2 - 5^2 \iff 13^2 = 12^2 + 5^2$.

De la relation de Pythagore, les longueurs des deux autres côtés sont 13 et 5.