Correction contrôle de mathématiques Du lundi 27 novembre 2017

Exercice 1

Ensemble de définition

(4 points)

Déterminer en vous justifiant, les ensembles de définition des fonctions suivantes :

1) Racine de $x^2 - 3x - 4$. $x_1 = -1$ racine évidente, P = -4 donc $x_2 = 4$.

Conclusion: $D_f = \mathbb{R} - \{-1; 4\}$

2) Condition: $4 - x \ge 0 \Leftrightarrow -x \ge -4 \Leftrightarrow x \le 4$.

Conclusion: $D_f =]-\infty$; 4]

3) Conditions: $\begin{cases} x(x-3) \ge 0 \\ x \ne 3 \end{cases}$

	х	_	∞	0 3			+∞	
Ī	$\frac{x}{x-3}$		+	- 0) –		+	

Conclusion: $D_f =]-\infty$; $0] \cup]3$; $+\infty[$

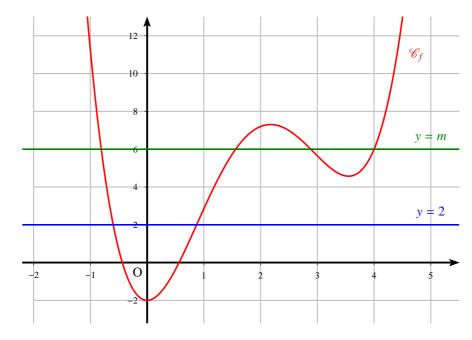
4) Condition: $x \neq 1$, $D_f = \mathbb{R} - \{1\}$

Exercice 2

Résolution graphique

(6 points)

1) On obtient l'allure de la courbe suivante :



2) a) On obtient le tableau de variation de la fonction f suivant :

х	-∞	0	2,18	3,55	+∞
	+∞		7,30		+∞
f(x)		\ /	/	4.57	<i></i>
		-2		4,57	

b) L'équation f(x) = 0 admet deux solutions α et β car la courbe coupe deux fois l'axe des abscisses.

On trouve les valeurs approchées suivantes $\alpha \approx -0,44$ et $\beta \approx 0,56$.

c) On trace la droite horizontale y = 2.

On cherche les abscisses des points de \mathscr{C}_f qui sont en dessous ou sur la droite d'équation y = 2.

On trouve S = [-0, 60; 0, 87]

d) Pour que l'équation f(x) = m admette 4 solutions, la courbe \mathcal{C}_f doit couper 4 fois la droite horizontale d'équation y = m.

Ceci n'est possible que si $m \in]4,57$; 7,30[.

Exercice 3

Valeur absolue (4 points)

1) a)
$$7 - 2|x + 3| = -3 \Leftrightarrow -2|x + 3| = -10 \Leftrightarrow |x + 3| = 5$$

 $\Leftrightarrow x + 3 = 5 \text{ ou } x + 3 = -5$
 $\Leftrightarrow x = 2 \text{ ou } x = -8$

b)
$$|2-3x| = |2x+1| \Leftrightarrow 2-3x = 2x+1 \text{ ou } 2-3x = -2x-1$$

 $\Leftrightarrow -5x = -1 \text{ ou } -x = -3$
 $\Leftrightarrow x = \frac{1}{5} \text{ ou } x = 3$

$$S = \left\{ \frac{1}{5} \; ; \; 3 \right\}$$

c)
$$|5x - 2| \le 4 \iff -2 \le 5x \le 6 \iff -\frac{2}{5} \le x \le \frac{6}{5}$$
.

$$S = \left[-\frac{2}{5}; \frac{6}{5} \right]$$

d)
$$|3-2x| > 5 \Leftrightarrow 3-2x > 5 \text{ ou } 3-2x < -5$$

 $\Leftrightarrow -2x > 2 \text{ ou } -2x < -8$
 $\Leftrightarrow x < -1 \text{ ou } x > 4$

$$S =]-\infty; -1[\cup]4; +\infty[$$

2) I =] - 9; -1[, on cherche le centre de l'intervalle $\frac{-9-1}{2} = -5$ puis le rayon r = -1 - (-5) = 4 On a alors |x + 5| < 4.

J =]
$$-\infty$$
; -5] \cup [1; $+\infty$ [, on cherche le centre de l'union d'intervalles $\frac{-5+1}{2} = -2$ on a alors $|x+2| \ge 3$. puis le rayon $r = 1 - (-2) = 3$

Exercice 4

Variation des fonctions carrées et homographiques

(2 points)

1) On obtient le tableau de variation de la fonction $f(x) = -3(x-2)^2 + 5$ suivant :

х	-∞	2	+∞
f(x)	-∞	5	-∞

2) On obtient le tableau de variation de la fonction $g(x) = \frac{-3}{x-2} - 2$ suivant :

х	-∞	2	2 +∞
f(x)	-2	+∞	-2

EXERCICE 5

Variation des fonctions associées

(4 points)

1)
$$f(x) = \frac{1}{\sqrt{x+3}}$$
 sur $I =]-3; +\infty[$

On pose
$$u(x) = x + 3$$
, $v(x) = \sqrt{u(x)}$, donc $f(x) = \frac{1}{v(x)}$

Sur I

- u est une fonction affine croissante car a = 1 > 0.
- u et \sqrt{u} ont même variation, donc v est croissante.
- v et $\frac{1}{v}$ ont des variations contraires donc f est décroissante.

2)
$$f(x) = \frac{-2}{x^2 + 3}$$
 sur $I = [0; +\infty[$

On pose
$$u(x) = x^2$$
, $v(x) = u(x) + 3$, $w(x) = \frac{1}{v(x)}$, donc $f(x) = -2w(x)$

Sur I:

- La fonction carrée est croissante, donc *u* est croissante.
- u et u + 3 ont même variation, donc v est croissante.
- v et $\frac{1}{v}$ ont des variations contraires donc w est décroissante.
- w et -2w ont des variations contraires donc f est croissante.

3)
$$f(x) = x^2 + \frac{3}{x-1}$$
 sur $I =]-\infty$; 0]

On pose
$$u(x) = x - 1$$
, $v(x) = \frac{1}{u(x)}$, $w(x) = 3v(x)$, donc $f(x) = x^2 + w(x)$

Sur I:

- u est une fonction affine croissante car a = 1 > 0.
- u et $\frac{1}{v}$ ont des variations contraires, donc v est décroissante.
- v et 3v ont même variation donc w est décroissante.

Comme la fonction carré et la fonction w sont décroissante sur I, leur somme f est décroissante.

4) Sur I, on a
$$x + 2 < 0$$
, donc $|x + 2| = -x - 2$ et donc $f(x) = \frac{-5}{x + 2}$

On pose
$$u(x) = x + 2$$
, $v(x) = \frac{1}{u(x)}$, donc $f(x) = -5v(x)$

Sur I:

- u est une fonction affine croissante car a = 1 > 0.
- u et 1/u ont des variations contraires, donc v est décroissante.
 v et -5v ont des variations contraires donc f est croissante.