Correction contrôle de mathématiques Du lundi 29 janvier 2024

Exercice 1

QCM (5 points)

1) **Réponse c**): $f'(-4) = \frac{\Delta y}{\Delta x} = \frac{3}{1} = 3$

2) **Réponse d**): $f'(1) = -\frac{1}{2}$ et f(1) = -1 donc $T_1: y = f'(1)(x-1) + f(1) \Leftrightarrow y = -\frac{1}{2}(x-1) - 1 \Leftrightarrow y = -\frac{1}{2}x - \frac{1}{2}$

- 3) **Réponse c)**: Pour que la fonction f soit définie, il faut que son dénominateur soit non nul et d'après la parabole $x \neq -1$ et $x \neq 7$.
- 4) **Réponse d**): Pour résoudre $f(x) = 1 \Leftrightarrow mx + p = ax^2 + bx + c$, on cherche les abscisses des points d'intersection entre la parabole et la droite. Il y en a deux x = 0 et x = 4.
- 5) **Réponse a**): On dérive comme un produit (uv)' et la racine comme $(\sqrt{u})'$: $f'(x) = \sqrt{2x+3} + x \times \frac{2}{2\sqrt{2x+3}} = \frac{2x+3+x}{\sqrt{2x+3}} = \frac{3x+3}{\sqrt{2x+3}} = \frac{3(x+1)}{\sqrt{2x+3}}$

Exercice 2

Fonctions dérivées (6 points)

1) $f(x) = \frac{3}{4}x^4 - 6x^2 + 7$ dérivable sur \mathbb{R} (polynôme). $f'(x) = 3x^3 - 12x = 3x(x^2 - 4) = 3x(x - 2)(x + 2)$

2) $f(x) = \frac{1}{x^2 + 2x - 3}$ dérivable si $x^2 + 2x - 3 \neq 0$ $\stackrel{x=1 \text{ rac. évidente}}{\Leftrightarrow} x \neq 1 \text{ et } x \neq -3.$ On dérive comme $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$ donc $f'(x) = \frac{-(2x+2)}{(x^2 + 2x - 3)^2} = \frac{2(x+1)}{(x^2 + 2x - 3)^2}.$

- 3) $f(x) = \frac{5x-3}{2x-7}$ dérivable sur $\mathbb{R} \{\frac{7}{2}\}$ On dérive comme $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$. $f'(x) = \frac{5(2x-7) - 2(5x-3)}{(2x-7)^2} = \frac{10x-35-10x+6}{(2x-7)^2} = \frac{-29}{(2x-7)^2}$
- 4) $f(x) = \frac{x^2 + x + 1}{x 1}$ dérivable sur $\mathbb{R} \{1\}$. On dérive comme $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$. $f'(x) = \frac{(2x + 1)(x - 1) - 1(x^2 + x + 1)}{(x - 1)^2} = \frac{2x^2 - 2x + x - 1 - x^2 - x - 1}{(x - 1)^2} = \frac{x^2 - 2x - 2}{(x - 1)^2}.$
- 5) $f(x) = (x^2 + 1)(x^3 2x)$ dérivable sur \mathbb{R} . On dérive comme (uv)' = u'v + uv'. $f'(x) = 2x(x^3 2x) + (x^2 + 1)(3x^2 2) = 2x^4 4x^2 + 3x^4 2x^2 + 3x^2 2 = 5x^4 3x^2 2$.
- 6) $f(x) = \frac{x^2}{x^2 2x + 2}$ dérivable sur \mathbb{R} car $x^2 2x + 2 = 0 \stackrel{\Delta = -4 < 0}{\Leftrightarrow}$ pas de solution $f'(x) = \frac{2x(x^2 2x + 2) x^2(2x 2)}{(x^2 2x + 2)^2} = \frac{2x(x^2 2x + 2 x^2 + x)}{(x^2 2x + 2)^2} = \frac{2x(2 x)}{(x^2 2x + 2)^2}$

Exercice 3

Étude d'une fonction

(5 points)

1) La fonction f est paire car [-3; 3] est symétrique par rapport à 0 et :

$$\forall x \in [-3; 3], \ f(-x) = -\frac{1}{4}(-x)^4 + 2(-x)^2 + 1 = -\frac{1}{4}x^4 + 2x^2 + 1 = f(x).$$

La courbe \mathscr{C}_f est symétrique par rapport à l'axe des ordonnées.

2)
$$f'(x) = -x^3 + 4x = x(4 - x^2) = x(2 - x)(2 + x)$$
.

3) $f'(x) = 0 \Leftrightarrow x = 0$ ou x = 2 ou x = -2. On obtient le tableau de signe suivant :

х	-3	-2	2	0		2		3
X		-	_	0	+		+	
$4 - x^2$		- () +		+	0	_	
f'(x)		+ () –	0	+	0	-	

4) On obtient le tableau de variation :

х	-3		-2		0		2		3
f'(x)		+	ø	_	0	+	0	_	
f(x)	$-\frac{5}{4}$. 5	\	1		5 .	\	$-\frac{5}{4}$

5)
$$T_1: y = f'(1)(x-1) + f(1) \Leftrightarrow y = 3(x-1) + \frac{11}{4} \Leftrightarrow y = 3x - \frac{1}{4}$$

Exercice 4

Vase (4 points)

1) $C(40) = 40^2 - 400 + 500 = 1700$ et $R(40) = 50 \times 40 = 2000$. La coût de production et la recette de 30 vases sont respectivement de $1700 \in$ et de $2000 \in$. La bénéfice de l'artisan est alors de $2000 - 1700 = 300 \in$.

2) a)
$$B(x) = R(x) - C(x) = 50x - (x^2 - 10x + 500) = 50x - x^2 + 10x - 500 = -x^2 + 60x - 500$$

or $(10 - x)(x - 50) = 10x - 500 - x^2 + 50 = -x^2 + 60x - 500 = B(x)$

b) $B(x) = 0 \Leftrightarrow x = 10$ ou x = 50. On obtient le tableau de signes suivant :

x	0		10		50		60
B(x)		_	0	+	ф	_	

Pour que l'artisan réalise un bénéfice, il doit produire et vendre entre 10 et 50 vases.

c)
$$B'(x) = -2x + 60 = 2(-x + 30)$$
.

 $B'(x) = 0 \Leftrightarrow x = 30$ on obtient alors le tableau de variation suivant :

х	0		30		60
B'(x)		+	ф	-	
B(x)			400		
	-500	-			-500

Le bénéfice maximal pour l'artisan est de 400 € obtenu pour la production et la vente de 30 vases.