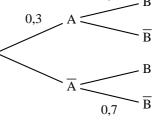
Contrôle de mathématiques

Jeudi 27 mars 2025

Exercice 1

QCM (5 points)


Pour chacune des questions, une seule des quatre propositions est correcte. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- 1) J'ai deux enfants dont au moins une fille. Quelle est la probabilité que mon autre enfant soit un garçon?
 - **a**) $\frac{1}{4}$
- **b**) $\frac{2}{3}$
- c) $\frac{1}{2}$
- **d**) $\frac{1}{2}$
- 2) On donne le tableau double entrée donnant certains pourcentages d'apparition où A et B sont deux événements. On a alors:
 - **a)** $p_A(B) = \frac{2}{5}$ **c)** $p_A(B) = \frac{2}{3}$

 - **b**) $p_{\rm B}({\rm A}) = \frac{2}{5}$ **d**) $p_{\rm B}({\rm A}) = \frac{2}{3}$

	A	Ā	Total
В	40		60
$\overline{\mathbf{B}}$		30	
Total			100

- 3) On donne l'arbre de probabilité suivant. On a alors :
 - **a**) p(B) = 0.18
- **c**) p(B) = 0.67
- **b**) $p_A(B) = 0,6$
- **d**) $p_{\rm R}({\rm A}) = 0.6$

Pour 4) et 5), on donne la loi de probabilité incomplète de la variable aléatoire X :

x_i	0	1	2	3
$p(X=x_i)$	0,100	0,425		0,073

- 4) L'espérance E(X) vaut :
 - **a)** 1,448
- **b**) 1,023
- **c)** 1,000
- **d**) 1,548

- 5) La variance V(X) vaut à 10^{-3} près
 - **a)** 0,593
- **b)** 0,770
- **c)** 2,690
- **d**) 2,097

EXERCICE 2

Maladie et test (5 points)

Un maladie atteint 3 % d'une population. On dispose d'un test pour la détecter. Une étude statistique a donné les résultats suivants :

- Chez les personnes malades, 95 % des tests sont positifs.
- Chez les personnes bien portantes, 2 % des tests sont positifs.

On choisit une personne au hasard et l'on note :

- M : « la personne est malade »
- T : « la personne a été testé positive »
- 1) Traduire les données de l'énoncé avec les notations proposées puis construire l'arbre de probabilité correspondant.
- 2) a) Quelle est la probabilité que la personne soit malade et ait été testé positive?
 - b) Quelle est la probabilité que la personne ait été testé positive?
 - c) Quelle est la probabilité que le personne soit malade ou ait été testé positive?
- 3) On choisit une personne ayant eu un test négatif, quelle est la probabilité qu'elle ne soit pas malade? On donnera le résultat à 10⁻³ près.

 Interpréter ce résultat dans le contexte de l'énoncé.

EXERCICE 3

Urne (4 points)

Une urne contient 20 boules numérotés de 1 à 20. On tire au hasard une boule de l'urne et l'on note son numéro. On pose :

- A : « le numéro est un multiple de 3 »
- B : « le numéro est strictement supérieur à 5 »

En se justifiant, répondre aux questions suivantes :

- 1) Calculer: p(A), p(B) et $p(A \cap B)$
- 2) Calculer: $p_B(A)$ et $p_A(B)$
- 3) Calculer: $p(\overline{A} \cap \overline{B})$ et $p(\overline{A} \cup \overline{B})$

Exercice 4

Jetons (6 points)

Une urne contient 10 jetons blancs et 5 jetons rouge.

Un joueur tire successivement sans remise et de façon indépendante deux jetons de l'urne. Un jeton blanc rapporte $2 \in$ et un jeton rouge fait perdre $3 \in$.

Soit X, la variable aléatoire associée au gain algébrique du joueur avec les deux jetons.

- 1) Quelles sont les valeurs prises par X?
- 2) a) Montrer que l'on a : $p(X = -1) = \frac{10}{21}$.
 - b) Déterminer la loi de probabilité de X.
- 3) Quel gain algébrique le joueur peut-il espérer?
- 4) Il y a maintenant 10 jetons blancs et 7 jetons rouges dans l'urne. Le jeu est-il toujours favorable au joueur? On se justifiera.