Les nombres complexes Le point de vue géométrique

Table des matières

1	For	ne trigonométrique 2	
	1.1	Angle orienté et mesure principale	
	1.2	Forme trigonométrique	
	1.3	Relations de symétrie	
	1.4	Relations trigonométriques	
	1.5	Opérations sur les modules et arguments	
2	Forme exponentielle 4		
	2.1	Introduction	
	2.2	Définition	
	2.3	Formule de Moivre et formules d'Euler	
3	Ensemble des complexes de module 1 5		
	3.1	Propriété	
	3.2	Racines <i>n</i> -ième de l'unité	
2	Complexes et vecteurs		
	4.1	Affixe d'un vecteur	
	4.2	Ensemble de points	
	4.3	Somme de deux vecteurs	
	4.4	Angle orienté	
	4.5	Alignement, parallélisme et orthogonalité	

Forme trigonométrique 1

Angle orienté et mesure principale

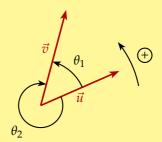
Définition 1: Un angle orienté est défini par deux vecteurs \vec{u} et \vec{v} , noté (\vec{u}, \vec{v}) .

L'angle est alors orienté de \vec{u} vers \vec{v} .

On dit que les mesures (en radian) θ_1 et θ_2 d'un même angle orienté (\vec{u}, \vec{v}) sont égales modulo 2π , s'il existe un entier relatif *k* tel que :

$$\theta_2 = \theta_1 + k \times 2\pi$$
 on note alors $\theta_1 = \theta_2$ [2 π]

On appelle mesure principale d'un angle (\vec{u}, \vec{v}) , la mesure θ avec $\theta \in]-\pi,\pi]$.



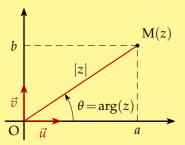
Remarque : On veillera à donner un angle orienté avec sa mesure principale : par exemple $-\frac{5\pi}{3} = \frac{\pi}{3}$ [2 π].

Forme trigonométrique 1.2

Définition 2 : Soit z = a + ib un complexe non nul.

La forme trigonométrique de z, est l'écriture de la forme : $z = r(\cos\theta + i\sin\theta)$

- $r=\sqrt{a^2+b^2}=|z|$ module de z• $\theta=(\vec{u}$, $\overrightarrow{\mathrm{OM}})=\arg(z)$ $[2\pi]$ argument de z



Remarque : $z = r(\cos \theta + i \sin \theta)$ est à relier aux coordonnées polaires de $\mathbf{M}(r\,;\,\theta)$.

Exemples:

Trouver la forme trigonométrique de z = 1 - i

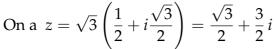
$$|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$\cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 et $\sin \theta = -\frac{\sqrt{2}}{2}$ $\Rightarrow \theta = -\frac{\pi}{4}$ [2 π]:

$$z = \sqrt{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right]$$

2

Trouver la forme algébrique de $z = \sqrt{3} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$



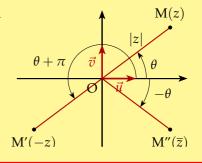
1.3 Relations de symétrie

Propriété 1 : Pour tout complexe z non nul, on a

les relations suivantes:

$$|-z| = |z|$$
 et $arg(-z) = arg(z) + \pi [2\pi]$

$$|\overline{z}| = |z|$$
 et $\arg(\overline{z}) = -\arg(z)$ $[2\pi]$



1.4 Relations trigonométriques

Théorème 1: Formules d'addition

Pour tous réels a et b, on a les relations

$$\Im \sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$2 \cos(a-b) = \cos a \cos b + \sin a \sin b$$

Démonstration: Formule 2. Soit les points A et B sur le cercle unité:

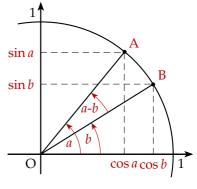
Calculons le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$ de deux façons :

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \times \overrightarrow{OB} \times \cos(a - b) = \cos(a - b)$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \begin{pmatrix} \cos a \\ \sin a \end{pmatrix} \cdot \begin{pmatrix} \cos b \\ \sin b \end{pmatrix} = \cos a \cos b + \sin a \sin b$$

Des deux égalités, on déduit la formule 2 :

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$



Pour trouver la formule ①, on remplace dans ② b par -b, on a alors :

$$\cos(a+b) = \cos[a-(-b)] \stackrel{\text{@}}{=} \cos a \cos(-b) + \sin a \sin(-b) = \cos a \cos b - \sin a \sin b$$

Pour trouver les formules ③ et ④ avec le sinus, on utilise les relations :

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \text{et} \quad \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

Remarque: Pour se souvenir des formules d'addition, on peut remarquer:

- Avec le cosinus on « ne panache pas » tandis qu'avec le sinus on « panache ».
- Avec le cosinus de a + b, on met un « moins » entre les deux termes.

Théorème 2: Formules de duplication

Pour tout réel *a*, on a les relations :

$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\sin 2a = 2\sin a\cos a$$

Démonstration: On utilise les formules d'addition en faisant b=a.

1.5 Opérations sur les modules et arguments

Théorème 3 : Pour tous complexes z et z' non nuls, on a les relations suivantes :

$$\begin{aligned} |z \, z'| &= |z| \, |z'| &\quad \text{et} \quad \arg(z \, z') &= \arg(z) + \arg(z') \quad [2\pi] \\ |z^n| &= |z|^n &\quad \text{et} \quad \arg(z^n) &= n \arg(z) \quad [2\pi] \\ \left|\frac{z}{z'}\right| &= \frac{|z|}{|z'|} &\quad \text{et} \quad \arg\left(\frac{z}{z'}\right) &= \arg(z) - \arg(z') \quad [2\pi] \end{aligned}$$

Démonstration : Soit $z = r(\cos\theta + i\sin\theta)$ et $z' = r'(\cos\theta' + i\sin\theta')$: $zz' = rr'(\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$ $= rr'(\cos\theta\cos\theta' + i\cos\theta\sin\theta' + i\sin\theta\cos\theta' - \sin\theta\sin\theta')$ $= rr'[\underline{\cos\theta\cos\theta' - \sin\theta\sin\theta'} + i(\underline{\cos\theta\sin\theta' + \sin\theta\cos\theta'})]$ $= rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$

Par identification, on a : |zz'| = rr' = |z| |z'| et $\arg(zz') = \arg(z) + \arg(z')$ $[2\pi]$

- On démontre $|z^n| = |z|^n$ et $\arg(z^n) = n \arg(z)$ par récurrence.
- Pour le quotient, on pose $Z=\frac{z}{z'}$, on a donc z=Zz'. Du produit : $|z|=|Z|\,|z'|\quad\Leftrightarrow\quad |Z|=\frac{|z|}{|z'|}$

$$arg(z) = arg(Z) + arg(z')$$
 $[2\pi] \Leftrightarrow arg(Z) = arg(z) - arg(z')$ $[2\pi]$

2 Forme exponentielle

2.1 Introduction

Soit la fonction f définie de \mathbb{R} dans \mathbb{C} par : $f(\theta) = \cos \theta + i \sin \theta$.

$$f(\theta)f(\theta') = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= (\cos\theta\cos\theta' + i\cos\theta\sin\theta' + i\sin\theta\cos\theta' - \sin\theta\sin\theta')$$

$$= (\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \sin\theta\cos\theta')$$

$$= [\cos(\theta + \theta') + i\sin(\theta + \theta')] = f(\theta + \theta')$$

Donc $f(\theta + \theta') = f(\theta)f(\theta')$.

Les seules fonctions dérivables non nulles (f(0) = 1) sur \mathbb{R} qui transforment une somme en produit sont du type $f(x) = e^{kx}$.

En étendant la fonction exponentielle à \mathbb{C} , on pose $f(\theta) = e^{k\theta}$ avec $k \in \mathbb{C}$ et $\theta \in \mathbb{R}$

Dérivons la fonction f pour déterminer k: $f'(\theta) = k e^{k\theta}$ et

$$f'(\theta) = -\sin\theta + i\cos\theta = i^2\sin\theta + i\cos\theta = i(\cos\theta + i\sin\theta) = if(\theta)$$

Par identification, on obtient alors k = i.

En étendant la fonction exponentielle à \mathbb{C} , on décide de poser $e^{i\theta} = \cos \theta + i \sin \theta$.

Définition 2.2

Définition 3: La forme exponentielle d'un nombre complexe non nul est :

$$z = re^{i\theta}$$
 avec $r = |z|$ et $\theta = \arg(z)$ $[2\pi]$

Remarque: On peut maintenant admirer l'expression d'Euler: $e^{i\pi} + 1 = 0$.

Cette expression contient tous les nombres qui ont marqué l'histoire des mathématiques : 0 et 1 pour l'arithmétique, π pour la géométrie, i pour les nombres complexes et *e* pour l'analyse.

Exemple: Soit
$$z=1+i\sqrt{3}$$
, on a: $|z|=2$ et $\arg(z)=\frac{\pi}{3}$ donc $z=2e^{i\frac{\pi}{3}}$

Formule de Moivre et formules d'Euler 2.3

Théorème 4 : Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, on a alors :

- Formule de Moivre : $\cos n\theta + i \sin n\theta = e^{i n\theta} = (\cos \theta + i \sin \theta)^n$
- Formules d'Euler: $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$

Remarque: Bien remarquer que pour $\sin \theta$, on divise par 2i.

Démonstration:

- La formule de Moivre est l'application directe de la relation fonctionnelle de la fonction exponentielle : $e^{na} = (e^a)^n$
- Pour les formules d'Euler, on développe la forme exponentielle :

$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{\cos\theta + i\sin\theta + \cos(-\theta) + i\sin(-\theta)}{2} = \frac{\cos\theta + i\sin\theta + \cos\theta - i\sin\theta}{2} = \cos\theta$$

$$\frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{\cos\theta + i\sin\theta - \cos(-\theta) - i\sin(-\theta)}{2i} = \frac{\cos\theta + i\sin\theta - \cos\theta + i\sin\theta}{2i} = \sin\theta$$

Ensemble des complexes de module 1 3

3.1 Propriété

Théorème S : Soit U, l'ensemble des complexes de module 1.

- $z \in \mathbb{U} \iff z = e^{i\theta} = \cos\theta + i\sin\theta$. L'ensemble \mathbb{U} est stable par rapport au produit et à l'inverse :

$$z, z' \in \mathbb{U} \implies zz' \in \mathbb{U} \text{ et } \frac{1}{z} \in \mathbb{U}$$

Démonstration: Propriété des modules pour le produit et l'inverse.

3.2 Racines *n*-ième de l'unité

Théorème 6 : Soit $n \in \mathbb{N}^*$.

- Les racines n-ième de l'unité sont les solutions de l'équation $z^n = 1$.
- \mathbb{U}_n est l'ensemble des n racines de l'unité :

$$\mathbb{U}_n = \left\{ z_k = e^{i\frac{2k\pi}{n}}, \ k \in \llbracket 0, n-1 \rrbracket \right\}$$

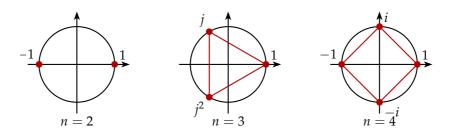
- Leur somme est nulle : $\sum_{k=0}^{n-1} z_k = 1 + z_1 + z_2 + \dots + z_{n-1} = 0$
- Leurs images M_k dans le plan complexe sont les sommets d'un polygone régulier de n côtés inscrit dans le cercle unité.

Démonstration: On décompose z et 1 en module argument, avec $k \in \mathbb{Z}$:

$$z^{n} = 1 \Leftrightarrow \begin{cases} |z^{n}| = 1 \\ \arg(z^{n}) = 0 \end{cases} \Leftrightarrow \begin{cases} |z|^{n} = 1 \\ n \arg(z) = 2k\pi \end{cases} \Leftrightarrow \begin{cases} |z| = 1 \\ \arg(z) = \frac{2k\pi}{n} \end{cases}$$

- Il y a n angles distincts correspondant aux valeurs de $k \in [0, n-1]$
- Les solutions sont les puissances de $z_1 = e^{i\frac{2\pi}{n}}$ car $z_k = e^{i\frac{2k\pi}{n}} = \left(e^{i\frac{2\pi}{n}}\right)^k = z_1^k$ $\sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} z_1^k = 1 + z_1 + \dots + z_1^{n-1} \stackrel{\text{suite g\'eo}}{=} \frac{1 - z_1^n}{1 - z_1} = 0 \quad \text{car } z_1^n = z_0 = 1$
- Soit les points $M_k(z_k)$, on a alors $(\overrightarrow{OM_k}, \overrightarrow{OM_{k+1}}) = \frac{2\pi}{n}$ avec $k \in [0, n-1]$. Les points M_k sont alors les sommets d'un polygone régulier de n côtés.

On obtient les représentations suivantes :



4 Complexes et vecteurs

4.1 Affixe d'un vecteur

Théorème 7: Pour tous points $A(z_A)$ et $B(z_B)$ du plan complexe, on note :

• $z_{\overrightarrow{AB}}$ l'affixe du vecteur \overrightarrow{AB} on a alors :

$$z_{\overrightarrow{AB}} = z_B - z_A$$
, $AB = |z_B - z_A|$, $(\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_B - z_A)$

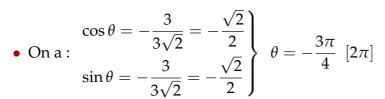
• I milieu de [AB], on a alors : $z_{\rm I} = \frac{z_{\rm A} + z_{\rm B}}{2}$.

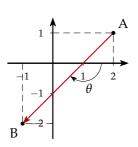
Remarque: Soit $A(z_A)$ et $B(z_B)$, on a : $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ \Leftrightarrow $z_{\overrightarrow{AB}} = z_B - z_A$

Exemple: On donne: A(2+i) et B(-1-2i). Faire une figure puis déterminer l'affixe du vecteur \overrightarrow{AB} , la distance AB et l'angle $(\overrightarrow{u}, \overrightarrow{AB})$.

•
$$z_{\overrightarrow{AB}} = z_B - z_A = -1 - 2i - 2 - i = -3 - 3i$$
 donc $\overrightarrow{AB}(-3 - 3i)$

• AB = $|z_B - z_A| = \sqrt{9+9} = 3\sqrt{2}$. On pose $\theta = (\vec{u}, \overrightarrow{AB})$





4.2 Ensemble de points

Théorème 8 : Soit r > 0, l'ensemble des points M(z) vérifiant

- $|z z_A| = r \Leftrightarrow AM = r$ est le cercle de centre A et de rayon r
- $|z z_A| = |z z_B| \Leftrightarrow AM = BM$ est la médiatrice du segment [AB]

4.3 Somme de deux vecteurs

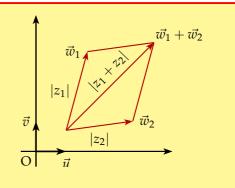
Théorème 9: Soit $\overrightarrow{w_1}(z_1)$, $\overrightarrow{w_2}(z_2)$

on a alors : $\vec{w}_1 + \vec{w}_2 (z_1 + z_2)$

et l'inégalité triangulaire :

$$|z_1 + z_2| \leqslant |z_1| + |z_2|$$

La somme de deux complexes revient à additionner deux vecteurs dans le plan complexe et inversement.



4.4 Angle orienté

Théorème 10: Pour tous points A, B, C et D tels que $(A \neq B)$ et $(C \neq D)$, on a :

$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$

Démonstration: D'après les règles sur les angles orientés:

$$(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v}) \text{ et } (\vec{u}, \vec{w}) = (\vec{u}, \vec{v}) + (\vec{v}, \vec{w})$$

on a les égalités suivantes :

$$(\overrightarrow{AB}, \overrightarrow{CD}) = (\overrightarrow{AB}, \overrightarrow{u}) + (\overrightarrow{u}, \overrightarrow{CD}) = (\overrightarrow{u}, \overrightarrow{CD}) - (\overrightarrow{u}, \overrightarrow{AB})$$

$$= \arg(z_{\overrightarrow{CD}}) - \arg(z_{\overrightarrow{AB}}) = \arg(z_{\overrightarrow{D}} - z_{\overrightarrow{C}}) - \arg(z_{\overrightarrow{B}} - z_{\overrightarrow{A}})$$

$$= \arg\left(\frac{z_{\overrightarrow{D}} - z_{\overrightarrow{C}}}{z_{\overrightarrow{B}} - z_{\overrightarrow{A}}}\right)$$

4.5 Alignement, parallélisme et orthogonalité

Propriété 2 : Soit A, B, C et D quatre points distincts deux à deux

A, B, C alignés
$$\Leftrightarrow \overrightarrow{AB}$$
 et \overrightarrow{AC} colinéaires $\Leftrightarrow \frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$

(AB) et (CD) parallèles
$$\Leftrightarrow \overrightarrow{AB}$$
 et \overrightarrow{CD} colinéaires $\Leftrightarrow \frac{z_D - z_C}{z_B - z_A} \in \mathbb{R}$

 $\overrightarrow{\text{Demonstration}}: \overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ colinéaires } \Leftrightarrow (\overrightarrow{AB}, \overrightarrow{AC}) = 0 \ [\pi]$

On en déduit que arg $\left(\frac{z_{\rm C} - z_{\rm A}}{z_{\rm B} - z_{\rm A}}\right) = 0 \ [\pi]$

même chose avec les vecteurs \overrightarrow{AB} et \overrightarrow{CD} pour deux droite parallèles

Propriété 3 : Soit $A \neq B$ et $C \neq D$ quatre points

(AB)
$$\perp$$
 (CD) \Leftrightarrow $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ \Leftrightarrow $\frac{z_D - z_C}{z_B - z_A} \in i \mathbb{R}$

 $\overrightarrow{\text{Demonstration}} : \overrightarrow{AB} \text{ et } \overrightarrow{CD} \text{ orthogonaux } \Leftrightarrow (\overrightarrow{AB}, \overrightarrow{CD}) = \frac{\pi}{2} \ [\pi]$

On en déduit que :
$$\arg\left(\frac{z_D - z_C}{z_B - z_A}\right) = \frac{\pi}{2} \ [\pi]$$

Remarque:

Pour montrer que ABC est rectangle isocèle en A, on montre que : $\frac{z_{\rm C}-z_{\rm A}}{z_{\rm B}-z_{\rm A}}=\pm i$