Révision : suites, raisonnement par récurrence

Exercice 1

Amérique du Sud nov 2016

La suite (u_n) est définie par : $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2 - u_n}$.

- 1) a) À l'aide du calcul des premiers termes de la suite (u_n) , conjecturer la forme explicite de u_n en fonction de n. Démontrer cette conjecture.
 - b) En déduire la valeur de la limite ℓ de la suite (u_n) .
- 2) Compléter l'algorithme ci-dessous permettant de déterminer la valeur du plus petit entier n tel que $|u_{n+1} u_n| \le 10^{-3}$.

```
Variables: n: entier et a, b: réels

Entrées et initialisation

n prend la valeur 0

a prend la valeur 0,5

Traitement

tant que |b - a| ..... faire

n prend la valeur ....

a prend la valeur ....

b prend la valeur ....

fin

Sorties: Afficher .....
```

EXERCICE 2

Polynésie juin 2016

Soit u la suite définie par $u_0 = 2$ et, pour tout entier naturel n, par : $u_{n+1} = 2u_n + 2n^2 - n$. On considère la suite v définie, pour tout entier naturel n, par : $v_n = u_n + 2n^2 + 3n + 5$.

1) Voici un extrait de feuille de tableur :

	A	В	C
1	n	и	v
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	
7			
8			
9			
10			

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

2) Déterminer, en justifiant, une expression de v_n et de u_n en fonction de n uniquement.

Exercice 3

Antilles-Guyane septembre 2015

1) On définit une suite (u_n) de réels strictement positifs par :

$$u_0 = 1$$
 et pour tout entier naturel n , $\ln u_{n+1} = \ln u_n - 1$.

La suite (u_n) est-elle géométrique?

2) Soit (v_n) une suite à termes strictement positifs.

On définit la suite (w_n) par, pour tout entier naturel n, $w_n = 1 - \ln v_n$.

La proposition (\mathcal{P}) suivante est-elle vraie ou fausse?

 (\mathcal{P}) : si la suite (v_n) est majorée alors la suite (w_n) est majorée.

3) La suite (z_n) de nombres complexes est définie par :

$$z_0 = 2 + 3i$$
 et, pour tout entier naturel n par $z_{n+1} = \left(\frac{\sqrt{2}}{4} + i\frac{\sqrt{6}}{4}\right)z_n$.

Pour quelles valeurs de n, $|z_n|$ est-il inférieur ou égal à 10^{-20} ?

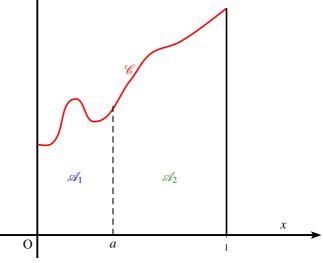
Exercice 4

Centres étrangers juin 2016

Soit f une fonction définie sur l'intervalle [0; 1], continue et positive sur cet intervalle, et a une réel tel que 0 < a < 1.

On note:

- « la courbe représentative de la fonction f dans un repère orthogonal :
- \$\mathscr{A}_1\$ l'aire du domaine plan limité par l'axe des abscisses et la courbe \$\mathscr{C}\$ d'une part, les droites d'équations \$x = 0\$ et \$x = a\$ d'autre part.
- \mathcal{A}_2 l'aire du domaine plan limité par l'axe des abscisses et la courbe \mathscr{C} d'une part, les droites d'équations x = a et x = 1 d'autre part.



Le but de cet exercice est de déterminer, pour différentes fonctions f, une valeur du réel a vérifiant la condition (E) : « les aires \mathscr{A}_1 et \mathscr{A}_2 sont égales ».

On admet l'existence d'un tel réel a pour chacune des fonctions considérées.

Partie A : Étude de quelques exemples

- 1) Vérifier que dans les cas suivants, la condition (E) est remplie pour un unique réel *a* et déterminer sa valeur.
 - a) f est une fonction constante strictement positive.
 - b) f est définie sur [0; 1] par f(x) = x.
- 2) a) À l'aide d'intégrales, exprimer, en unités d'aires, les aires \mathcal{A}_1 et \mathcal{A}_2 .

- b) On note F une primitive de la fonction f sur l'intervalle [0; 1].

 Démontrer que si le réel a satisfait la condition (E), alors $F(a) = \frac{F(0) + F(1)}{2}$.

 La réciproque est-elle vraie ?
- 3) Dans cette question, on envisage deux autres fonctions particulières.
 - a) La fonction f est définie pour tout réel x de [0; 1] par : $f(x) = e^x$. Vérifier que la condition (E) est vérifiée pour un unique réel a et donner sa valeur.
 - b) La fonction f définie pour tout réel x de [0; 1] par : $f(x) = \frac{1}{(x+2)^2}$. Vérifier que la valeur $a = \frac{2}{5}$ convient.

Partie B : Utilisation d'une suite pour déterminer une valeur approchée de a

On considère la fonction f définie pour tout réel x de [0; 1] par : $f(x) = 4 - 3x^2$.

1) Démontrer que si a est un réel satisfaisant la condition (E), alors a est solution de l'équation : $x = \frac{x^3}{4} + \frac{3}{8}$.

Dans la suite de l'exercice, on admettra que cette équation a une unique solution dans l'intervalle [0; 1]. On note *a* cette solution.

- 2) On considère la fonction g définie pour tout réel x de [0; 1] par $g(x) = \frac{x^3}{4} + \frac{3}{8}$ et la suite (u_n) définie par : $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = g(u_n)$.
 - a) Calculer u_1 .
 - b) Démontrer que la fonction g est croissante sur l'intervalle [0; 1].
 - c) Démontrer par récurrence que, pour tout entier naturel n, on a $0 \le u_n \le u_{n+1} \le 1$.
 - d) Prouver que la suite (u_n) est convergente.
 À l'aide des opérations sur les limites, prouver que la limite est a.
 - e) On admet que le réel a vérifie l'inégalité $0 < a u_{10} < 10^{-9}$. Calculer u_{10} à 10^{-8} près.