Révision : fonction logarithme Nombres complexes

Exercice 1

Amérique du Nord 2 juin 2015

(6 points)

Partie A

Soit *u* la fonction définie sur]0; $+\infty[$ par $u(x) = \ln x + x - 3$.

- 1) Justifier que la fonction u est strictement croissante sur l'intervalle]0; $+\infty[$.
- 2) Démontrer que l'équation u(x) = 0 admet une unique solution α comprise entre 2 et 3.
- 3) En déduire le signe de u(x) en fonction de x.

Partie B

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \left(1 - \frac{1}{x}\right)(\ln x - 2) + 2.$

On appelle \mathscr{C} la courbe représentative de la fonction f dans un repère orthogonal.

- 1) Déterminer la limite de la fonction f en 0.
- 2) a) Démontrer que, pour tout réel x de l'intervalle]0; $+\infty[$, $f'(x) = \frac{u(x)}{x^2}$, où u est la fonction définie dans la partie A.
 - b) En déduire le sens de variation de la fonction f sur l'intervalle $]0; +\infty[$.

Partie C

Soit \mathscr{C}' la courbe d'équation $y = \ln x$.

- 1) Démontrer que, pour tout réel x de l'intervalle]0; $+\infty[$, $f(x) \ln x = \frac{2 \ln x}{x}$. En déduire que les courbes \mathscr{C}' et \mathscr{C} ont un seul point commun dont on déterminera les coordonnées.
- 2) On admet que la fonction H définie sur l'intervalle]0; $+\infty[$ par $H(x) = \frac{1}{2}(\ln x)^2$ est une primitive de la fonction h définie sur l'intervalle]0; $+\infty[$ par $h(x) = \frac{\ln x}{x}$.

Calculer $I = \int_{1}^{e^2} \frac{2 - \ln x}{x} dx$. Interpréter graphiquement ce résultat.

Exercice 2

Amérique du Nord 2 juin 2015

(5 points)

On se place dans un repère orthonormé et, pour tout entier naturel n, on définit les points (A_n) par leurs coordonnées $(x_n; y_n)$ de la façon suivante :

$$\begin{cases} x_0 = -3 \\ y_0 = 4 \end{cases}$$
 et pour tout entier naturel n :
$$\begin{cases} x_{n+1} = 0, 8x_n - 0, 6y_n \\ y_{n+1} = 0, 6x_n + 0, 8y_n \end{cases}$$

PAUL MILAN 1 TERMINALE S

- 1) a) Déterminer les coordonnées des points A_0 , A_1 et A_2 .
 - b) Pour construire les points A_n ainsi obtenus, on écrit l'algorithme suivant :

```
Variables: i, x, y, t: nombres réels

Entrées et initialisation

x prend la valeur -3
y prend la valeur 4

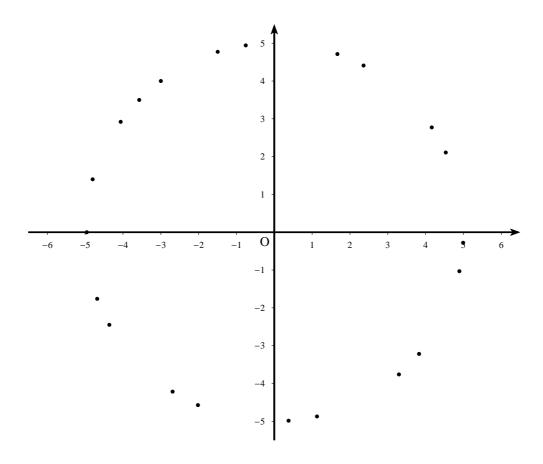
Traitement et sorties

pour i allant de 0 à 20 faire

Construire le point de coordonnées
(x; y)
t prend la valeur x
x prend la valeur .....
y prend la valeur .....
fin
```

Recopier et compléter cet algorithme pour qu'il construise les points A₀ à A₂₀.

c) À l'aide d'un tableur, on a obtenu le nuage de points suivant :



Identifier les points A_0 , A_1 et A_2 . On les nommera sur la figure, (à rendre avec la copie).

Quel semble être l'ensemble auquel appartiennent les points A_n pour tout n entier naturel?

2) Le but de cette question est de construire géométriquement les points A_n pour tout n entier naturel.

Dans le plan complexe, on nomme, pour tout entier naturel n, $z_n = x_n + iy_n$ l'affixe du point A_n .

- a) Soit $u_n = |z_n|$. Montrer que, pour tout entier naturel n, $u_n = 5$. Quelle interprétation géométrique peut-on faire de ce résultat?
- b) On admet qu'il existe un réel θ tel que $\cos \theta = 0, 8$ et $\sin \theta = 0, 6$. Montrer que, pour tout entier naturel n, $e^{i\theta} z_n = z_{n+1}$
- c) Démontrer que, pour tout entier naturel n, $z_n = e^{i n\theta} z_0$.
- d) Montrer que $\theta + \frac{\pi}{2}$ est un argument du nombre complexe z_0 .
- e) Pour tout entier naturel n, déterminer, en fonction de n et θ , un argument du nombre complexe z_n .

Représenter θ sur la figure jointe en annexe 2, (à rendre avec la copie).

Expliquer, pour tout entier naturel n, comment construire le point A_{n+1} à partir du point A_n .

PAUL MILAN 3 TERMINALE S