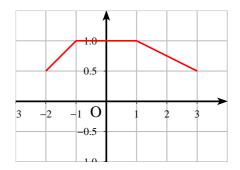
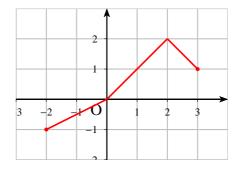
Exercices Intégration et primitives

Exercice 1

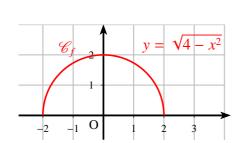
Notion d'intégrale

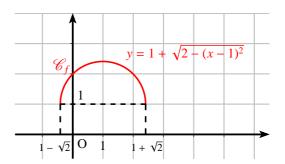
1) Pour chaque fonction affine par morceaux f, représentée ci-dessous, calculer, en utilisant les aires, l'intégrale I(f) sur l'intervalle de définition de f.





- 2) Dans chaque cas, la fonction f est représentée par sa courbe \mathscr{C}_f , dont une équation est indiquée.
 - a) Prouver que \mathscr{C}_f est un demi-cercle. Préciser son centre et son rayon.
 - b) En déduire l'intégrale de f sur son intervalle de définition.





3) Les fonctions affines par morceaux f et g sont définies sur l'intervalle [-1;5] par :

$$f(x) = \begin{cases} x+1 & \text{si } -1 \le x \le 0 \\ -x+1 & \text{si } 0 < x \le 3 \\ x-5 & \text{si } 3 < x \le 5 \end{cases} \quad \text{et} \quad g(x) = \begin{cases} -\frac{1}{2}x + \frac{3}{2} & \text{si } -1 \le x \le 1 \\ -\frac{1}{4}x + \frac{5}{4} & \text{si } 1 < x \le 5 \end{cases}$$

- a) Calculer les intégrales sur [-1;5] de f et g.
- b) En déduire les intégrales sur [-1;5] des fonction f + 4g et 5f 2g

Encadremment et valeur moyenne

1) Comparer, sans les calculer les réels I et J.

a)
$$I = \int_1^2 x \, e^x \, \mathrm{d}x$$

b)
$$J = \int_{1}^{2} x^{2} e^{x} dx$$

2) Démontrer les encadrements suivants :

a)
$$\frac{9}{4} \le \int_0^9 \frac{1}{1 + \sqrt{t}} \, \mathrm{d}t \le 9$$

c)
$$\frac{1}{2} \le \int_0^1 \frac{1}{1+t^3} dt \le 1$$

b)
$$\sqrt{2} \le \int_1^2 \sqrt{1+x^3} \, dx \le 3$$
 d) $2e^{-4} \le \int_0^2 \frac{1}{e^{x^2}} \, dx \le 2$

d)
$$2e^{-4} \le \int_0^2 \frac{1}{e^{x^2}} dx \le 2$$

e)
$$2 \ln 3 \le \int_2^4 \ln(x^2 - 1) \, dx \le 2 \ln 3 + 2 \ln 5$$

3) La suite (I_n) est définie sur \mathbb{N} par :

$$I_n = \int_0^1 (1+t^n) \,\mathrm{d}t$$

- a) Prouver que la suite (I_n) est décroissante.
- b) Est-elle convergente?
- 4) Calculer la valeur moyenne μ sur l'intevalle [-1; 1] de la fonction $f: x \mapsto \sqrt{1-x^2}$

5) Dans chacun des cas suivants, μ désigne la valeur moyenne d'une fonction continue fsur un intervalle I. Calculer l'intégrale indiquée :

a)
$$\mu = 2$$
; $I = [1; 4]$; $\int_{1}^{4} f(x) dx$

a)
$$\mu = 2$$
; $I = [1; 4]$; $\int_{1}^{4} f(x) dx$ b) $\mu = \ln 2$; $I = [1; 3]$; $\int_{2}^{1} f(x) dx$

c)
$$\mu = \frac{2}{\pi}$$
; $I = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$; $f \text{ paire}$; $\int_0^{\frac{\pi}{4}} f(x) dx$

6) Pour tout entier naturel non nul n, on pose : $I_n = \int_{-\infty}^{n+1} \frac{1}{x} dx$

a) Démontrer que
$$\frac{1}{n+1} \le I_n \le \frac{1}{n}$$

- b) La suite (I_n) est-elle convergente?
- 7) f est la fonction définie sur \mathbb{R}_+ par : $f(x) = \frac{x}{x+1}$. La suite (u_n) est définie sur \mathbb{N} par : $u_n = \int_0^{\infty} f(t) dt$

a) Démontrer que la suite (u_n) est croissante.

b) Prouver que pour tout entier
$$n \ge 1$$
, $u_n \ge \frac{n-1}{2}$. La suite (u_n) converge t-elle?

Primitive

1) Prouver dans les cas suivantes que la fonction F est une primitive de la fonction f sur un intervalle I.

a)
$$f(x) = \tan^2 x$$
; $F(x) = \tan x - x$; $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

b)
$$f(x) = \frac{2(x^4 - 1)}{x^3}$$
; $F(x) = \left(x + \frac{1}{x}\right)^2$; $I =]0; +\infty[$

c)
$$f(x) = \cos x - x \sin x$$
; $F(x) = x \cos x$; $I = \mathbb{R}$

d)
$$f(x) = \frac{1}{1 + e^x}$$
; $F(x) = x - \ln(1 + e^x)$; $I = \mathbb{R}$

e)
$$f(x) = \frac{1}{x \ln x}$$
; $F(x) = \ln(\ln x)$; $I =]1; +\infty[$

2) Montrer que les fonction F et G sont deux primitives de la même fonction f sur un intervalle I.

$$F(x) = \frac{x^2 + 3x - 1}{x - 1}; \quad G(x) = \frac{x^2 + 7x - 5}{x - 1}; \quad I =]1; +\infty[.$$

Exercice 4

Calcul de primitive

Pour les exercices suivants, donner une primitive de la fonction f sur l'intervalle I indiqué.

Linéarité de la primitive

1)
$$f(x) = x^4 - 4x^3 + x^2 - 4x + 3$$
, $I = \mathbb{R}$

2)
$$f(x) = \frac{x^2 - 2x + 1}{3}$$
, $I = \mathbb{R}$

3)
$$f(x) = 1 - \frac{1}{x^3}$$
, $I =]0; +\infty[$

4)
$$f(x) = -\frac{1}{x^3} + \frac{4}{x^2} - 1$$
, $I =$

5)
$$f(x) = \frac{2}{\cos^2 x} - 1$$
, $I = \left[0; \frac{\pi}{2}\right]$

Forme u'un

6)
$$f(x) = (x+2)^3$$
, $I = \mathbb{R}$

7)
$$f(x) = \frac{(x-1)^5}{3}$$
, $I = \mathbb{R}$

8)
$$f(x) = 2(3x - 1)^5$$
, $I = \mathbb{R}$

9)
$$f(x) = 2x(1+x^2)^5$$
, $I = \mathbb{R}$

10)
$$f(x) = \sin x \cos x$$
, $I = \mathbb{R}$

Forme $\frac{\mathbf{u}'}{\mathbf{u}}$

11)
$$f(x) = \frac{1}{x-4}$$
, $I =]4; +\infty[$

12)
$$f(x) = \frac{1}{x-4}$$
, $I =]-\infty; 4[$

13)
$$f(x) = \frac{2x-1}{x^2-x}$$
, $I =]0;1[$

Forme $\frac{u'}{u^n}$, $n \ge 2$

14)
$$f(x) = \frac{2}{(x+4)^3}$$
, $I =]-4; +\infty[$

15)
$$f(x) = \frac{1}{(3x-1)^2}$$
, $I =]-\infty; \frac{1}{3}[$

16)
$$f(x) = \frac{2x-1}{(x^2-x+3)^2}$$
, $I = \mathbb{R}$

17)
$$f(x) = \frac{x-1}{(x^2-2x-3)^2}$$
, $I =]-1;3[$

18)
$$f(x) = \frac{4x^2}{(x^3 + 8)^3}$$
, $I =]-2; +\infty[$ 22) $f(x) = 2e^{3x-2}$, $I = \mathbb{R}$

Forme
$$\frac{\mathbf{u}'}{\sqrt{u}}$$

19)
$$f(x) = \frac{2}{\sqrt{2x+1}}, I = \left] -\frac{1}{2}; +\infty \right[$$

20)
$$f(x) = \frac{2x}{\sqrt{x^2 - 1}}, I =]1; +\infty[$$

Forme u'eu

EXERCICES

21)
$$f(x) = e^{-x+1}$$
, $I = \mathbb{R}$

22)
$$f(x) = 2e^{3x-2}$$
, $I = \mathbb{R}$

23)
$$f(x) = xe^{-\frac{x^2}{2}}$$
, $I = \mathbb{R}$

24)
$$f(x) = \sin x \times e^{\cos x}$$
, $I = \mathbb{R}$

Forme u(ax + b)

25)
$$f(x) = \cos(3x) + \sin(2x)$$
, $I = \mathbb{R}$

26)
$$f(x) = 3\cos x - 2\sin(2x) + 1$$
, $I = \mathbb{R}$

$$27) \ f(x) = \sin\left(\frac{\pi}{3} - 2x\right), \ I = \mathbb{R}$$

Exercice S

Primitive et condition initiale

Pour les exercices suivants, trouver la primitive F, de la fonction f, qui vérifie la condition donnée sur un intervalle I à préciser.

1)
$$f(x) = x^4 + 3x^2 - 4x + 1$$
, $F(2) = 0$

2)
$$f(x) = \frac{2}{x^2} + x$$
, $F(1) = 0$

3)
$$f(x) = \frac{1}{(2x+1)^2}$$
, $F(0) = 0$

4)
$$f(x) = \sin\left(2x - \frac{\pi}{4}\right), \ F\left(\frac{\pi}{2}\right) = 0$$

5)
$$f(x) = \cos x \sin^2 x$$
, $F(\frac{\pi}{2}) = 1$

6)
$$f(x) = 2\cos\frac{x}{2} - 3\sin\frac{x}{2}$$
, $F(\frac{\pi}{2}) = 0$

7)
$$f(x) = \frac{2}{(2x+1)^2}$$
, $F(-1) = 0$

8)
$$f(x) = -\frac{1}{3-x}$$
, $F(1) = 1$

9)
$$f(x) = \frac{x}{(x^2 - 1)^2}$$
, $F(0) = 0$

10)
$$f(x) = e^{3x+1}$$
, $F(-1) = 0$

11)
$$f(x) = xe^{-x^2}$$
, $F(\sqrt{\ln 2}) = 1$

12)
$$f(x) = \frac{1}{x-1} + \frac{1}{x+1}$$
, $F(2) = 0$

Exercice 6

Calcul d'intégrales

Pour les exercices suivantes, calculer les intégrales indiquées à l'aide d'une primitive.

1)
$$I = \int_0^4 (x-3) \, \mathrm{d}x$$

1)
$$I = \int_0^4 (x-3) dx$$
 4) $I = \int_0^2 \frac{3x}{(x^2+1)^2} dx$ 7) $I = \int_0^4 dx$

7)
$$I = \int_0^4 dx$$

2)
$$I = \int_{2}^{-1} (t^2 - 4t + 3) dt$$
 5) $I = \int_{\ln 2}^{\ln 3} e^x dx$ 8) $I = \int_{2}^{-1} \frac{x - 3}{x} dx$

5)
$$I = \int_{\ln 2}^{\ln 3} e^x \, dx$$

8)
$$I = \int_{-2}^{-1} \frac{x-3}{x} \, \mathrm{d}x$$

3)
$$I = \int_{1}^{2} \left(t^2 + t - \frac{1}{t} \right) dt$$
 6) $I = \int_{0}^{3} \frac{dt}{(2t+1)^2}$ 9) $I = \int_{-1}^{1} \frac{x}{x^2 - 4} dx$

6)
$$I = \int_0^3 \frac{\mathrm{d}t}{(2t+1)^2}$$

9)
$$I = \int_{-1}^{1} \frac{x}{x^2 - 4} \, \mathrm{d}x$$

10)
$$I = \int_{-2}^{-1} \frac{x}{x^2 - 4} dx$$
 11) $I = \int_{0}^{1} 5e^{3x} dx$ 12) $I = \int_{0}^{1} te^{t^2 - 1} dt$

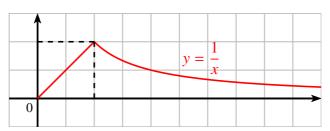
11)
$$I = \int_0^1 5e^{3x} dx$$

12)
$$I = \int_0^1 t e^{t^2 - 1} \, \mathrm{d}t$$

Calcul d'aire

La fonction f est représentée par la courbe ci-dessous. Utiliser la relation de Chasles pour calculer les intégrales :

$$I = \int_0^3 f(t) dt$$
 et $J = \int_2^{\frac{1}{2}} f(t) dt$



Exercice 8

Calcul d'intégrale par une décomposition

1) a) Trouver les réel a et b tels que, pour tout réels x de $\mathbb{R} - \{-3, 3\}$, on a :

$$\frac{1}{x^2 - 9} = \frac{a}{x - 3} + \frac{b}{x + 3}$$

b) En déduire :
$$I = \int_{4}^{5} \frac{1}{x^2 - 9} \, dx$$

2) a) Trouver trois réel a, b et c tels que pour tout réel de $\mathbb{R} - \{-3\}$, on a :

$$\frac{4x^2 - 5x + 1}{x + 3} = ax + b + \frac{c}{x + 3}$$

b) En déduire :
$$I = \int_{2}^{0} \frac{4x^2 - 5x + 1}{x + 3} dx$$

3) a) Prouver que pour tout réel x :

$$\frac{1}{1 + e^x} = 1 - \frac{e^x}{1 + e^x}$$

b) En déduire :
$$I = \int_0^1 \frac{1}{1 + e^x} dx$$

Calcul de primitives

Calculer une primitive de la fonction f sur l'intervalle indiquée.

1)
$$f(x) = \frac{x^2}{x^3 - 1} I =]-\infty; 1[$$

6)
$$f(x) = \frac{\ln x - 1}{x^2} I =]0; +\infty[$$

2)
$$f(x) = \frac{\cos x}{\sin x} I =]-\pi;0]$$

7)
$$f(x) = \frac{\ln x}{x} I =]0; +infty[$$

3)
$$f(x) = \frac{1}{x^2} e^{-\frac{2}{x}} I =]0; +\infty[$$

8)
$$f(x) = \frac{1}{x \ln x} I =]1; +\infty[$$

4)
$$f(x) = \sin x \cos x I = \mathbb{R}$$

5)
$$f(x) = \frac{\sin x - x \cos x}{x^2} I =]0; +\infty[$$
 9) $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} I = \mathbb{R}$

9)
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} I = \mathbb{R}$$

Exercice 10

Primitive d'une fonction rationnelle par décomposition

f désigne une fonction rationnelle définie sur un intervalle I. Déterminer une primitive de f à l'aide de la décompostion proposée

1)
$$f(x) = \frac{4x+5}{2x+1}$$
 $I =]1; +\infty[$. Excrime $f(x)$ sous la forme $f(x) = a + \frac{b}{2x+1}$

2)
$$f(x) = \frac{2x^2 - 3x - 4}{x - 2}$$
 $I =]2; +\infty[$. Excrime $f(x)$ sous la forme $f(x) = ax + b + \frac{c}{x - 2}$

3)
$$f(x) = \frac{1}{x-3} + \frac{1}{x+3}$$

a)
$$I =]3; +\infty[$$

b)
$$I =] - 3;3[$$

c)
$$I =]-\infty; -3[$$

4)
$$f(x) = \frac{x^2 + x + 1}{(x^2 - 1)^2} I =]1; +\infty[$$
. Excrime $f(x)$ sous la forme $f(x) = \frac{a}{(x - 1)^2} + \frac{b}{(x + 1)^2}$

Exercice 11

Intégration par partie

Calculer les intégales suivantes à l'aide d'une intégration par partie.

1)
$$I = \int_{1}^{e} x \ln x \, \mathrm{d}x$$

4)
$$I = \int_0^1 (x+2)e^x \, \mathrm{d}x$$

$$2) I = \int_1^{e^2} \ln t \, \mathrm{d}t$$

5)
$$I = \int_{1}^{2} (t-2)e^{2t} dt$$

3)
$$I = \int_0^{\pi} (x-1)\cos x \, dx$$

6)
$$I = \int_0^1 \frac{x}{\sqrt{x+1}} \, \mathrm{d}x$$

Primitive par intégration par partie

Trouver la prmitive F, nulle en a, des fonction f suivantes déterminées sur I

EXERCICES

1)
$$f(t) = \ln(t^2)$$
 $I =]0; +\infty[$ $a = 1$

2)
$$f(t) = (2t + 1) \sin t$$
 $I = \mathbb{R}$ $a = 0$

3)
$$f(t) = (t+1)^2 e^{2t}$$
 $I = \mathbb{R}$ $a = -1$ (on fera deux intégrations par partie).

4)
$$f(t) = (\ln t)^2$$
 $I =]0; +\infty[$ $a = 1$ (on fera deux intégrations par partie).

5)
$$f(t) = e^{-2t} \cos t$$
 $I = \mathbb{R}$ $a = 0$ (on fera deux intégrations par partie).

Exercice 13

Asie juin 2005

On s'intéresse dans cet exercice à une suite de nombres rationnels qui converge vers e².

On définit, pour tout entier naturel $n \ge 1$, l'intégrale $I_n = \int_0^2 \frac{1}{n!} (2-x)^n e^x dx$.

2) Établir que pour tout entier naturel
$$n \ge 1$$
, $0 \le I_n \le \frac{2^n}{n!} (e^2 - 1)$.

3) À l'aide d'une intégration par parties, montrer que
$$\forall n \in \mathbb{N}, n \ge 1, I_{n+1} = I_n - \frac{2^{n+1}}{(n+1)!}$$

4) Démontrer par récurrence que
$$e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} + I_n$$
.

5) On pose, pour tout entier naturel
$$n \ge 1$$
, $u_n = \frac{2^n}{n!}$.

a) Calculer
$$\frac{u_{n+1}}{u_n}$$
 et prouver que pour tout entier naturel $n \ge 3$, $u_{n+1} \le \frac{1}{2}u_n$.

b) En déduire que pour tout entier naturel
$$n \ge 3$$
, $0 \le u_n \le u_3 \left(\frac{1}{2}\right)^{n-3}$.

6) En déduire la limite de la suite
$$(u_n)$$
 puis celle de la suite (I_n) .

7) Justifier enfin que :
$$e^2 = \lim_{n \to +\infty} \left(1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} \right).$$

8) Cette égalité permet de trouver une valeur approchée de
$$e^2$$
.
Ecrire deux algorithmes avec votre calculatrice qui permettent :

2.	2^{2}	2^n	
a) De donner la valeur de $S_n = 1 + \frac{2}{11}$	+ - + · · · ·	+ - en	fonction de n. On remplira
1:	<i>∠</i> :	n!	r
le tableau suivant pour valider cet al	lgorithme :		

n	1	2	3	10	20
S_n					

b) De donner le nombres itérations nécessaire pour obtenir une précision donnée :

Précision 10 ^{-P}	10-1	10^{-2}	10^{-3}	10 ⁻⁶	10 ⁻⁹
Nombre d'itération					

On pourra constater que 1 itération supplémentaire augmente la précision d'un facteur 10.

Exercice 14

Suite

On considère les suites (x_n) et (y_n) définies pour tout entier naturel n non nul par :

$$x_n = \int_0^1 t^n \cos t \, dt \quad \text{et} \quad y_n = \int_0^1 t^n \sin t \, dt$$

- 1) a) Montrer que la suite (x_n) est à termes positifs.
 - b) Étudier les variations de la suite (x_n) .
 - c) Que peut-on en déduire quant à la convergence de la suite, (x_n) ?
- 2) a) Démontrer que, pour tour entier naturel n non nul :

$$x_n \leqslant \frac{1}{n+1}$$

- b) En déduire la limite de la suite (x_n) .
- 3) a) À l'aide d'une intégration par parties, démontrer que, pour tout entier naturel *n* non nul :

$$x_{n+1} = -(n+1)y_n + \sin(1)$$

- b) En déduire que : $\lim_{n\to\infty} y_n = 0$
- 4) On admet que, pour tout entier naturel n non nul :

$$y_{n+1} = (n+1)x_n - \cos(1)$$

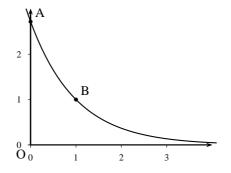
Déterminer $\lim_{n\to+\infty} nx_n$ et $\lim_{n\to+\infty} ny_n$

Exercice 15

Amérique du Sud nov 2004

On a représenté ci-contre, dans un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$, la courbe représentative de la fonction f dérivable sur \mathbb{R} , solution de l'équation différentielle

(E) :
$$y' + y = 0$$
 et telle que $f(0) = e$



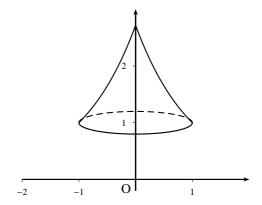
- 1) Déterminer f(x) pour tout x réel.
- 2) Soit t un réel donné de l'intervalle [1;e]. Résoudre dans \mathbb{R} l'équation $e^{1-x} = t$ d'inconnue x.

3) Soit A le point d'abscisse 0 et B le point d'abscisse 1 de la courbe.

On considère le solide obtenu par rotation autour de l'axe des ordonnées de l'arc de courbe AB comme représenté ci-contre. On note V son volume.

On admet que V =
$$\pi \int_{1}^{e} (1 - \ln t)^2 dt$$
.

Calculer V à l'aide de deux intégrations par parties successives.



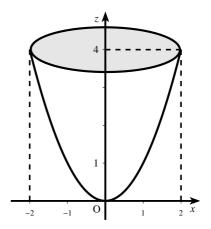
Exercice 16

Volume d'un phare

Calculer le volume V du phare ci-contre obtenu par révolution autour de l'axe (Oz) du morceau de parabole d'équation :

$$z = x^2$$

 $(0 \le x \le 2)$ dans le plan (xOz); unité 6 cm



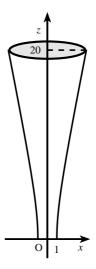
Exercice 17

Contenance d'un château d'eau

L'intérieur d'un château d'eau a la forme du solide de révolution obtenu en faisont tourner autour de Oz) la branche d(hyperbole définie par :

$$z = 5\sqrt{x^2 - 1}$$

 $0 \le z \le 20$. L'unité étant égale à 2 m, calculer la contenance du château d'eau (en hectolitre).



Exercice 18

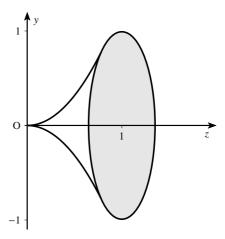
La trompette

EXERCICES

Déterminer le volume de la trompette obtenue par révolution autour de l'axe (Oz) du morceau de parabole d'équation :

$$y = z^2$$

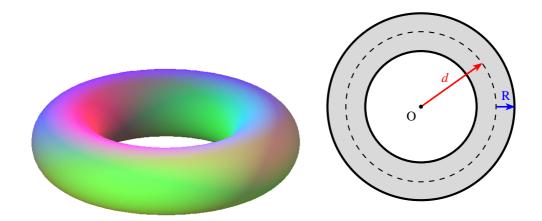
avec $0 \le z \le 1$



Exercice 19

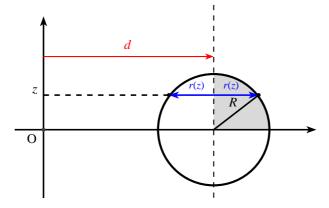
Volume d'un tore

Un tore est un solide qui a la forme d'une « chambre à air » ou d'un « donut » pour les anglais. Il est caractérisé par d et R comme indiqué sur la figure suivante :



Si l'axe du tore est l'axe z alors lorsqu'on découpe le tore par des plan perpendiculaires à cet axe, on obtient des couronnes dont les rayon des cercles intérieur et extérieur sont respectivement d + r(z) et d - r(z).

On donne le schéma suivant :



- 1) Déterminer la surface d'une couronne d'altitude z en fonction de d et r(z).
- 2) en déduire le volume du tore